Answer:
Student C
Explanation:
order from heaviest to lightest is...
9 kg (A) , 8000g (8 kg) (D) , 2800g (2.8kg) (B), 2 kg (C)
Here, ball is released... and it is in free fall means with zero initial velocity.
We know, s = ut + 1/2 at²
Here, s = 1000 m
u = 0
a = 10 m/s2
Substitute their values,
1000 = 0 + 1/2 * 10 * t²
2000 = 10 * t²
t² = 2000 /10
t = √200
t = 14.14 s
In short, Your Answer would be 14.14 seconds
Hope this helps!
Answer: 29.50 m
Explanation: In order to calculate the higher accelation to stop a train without moving the crates inside the wagon which is traveling at constat speed we have to use the second Newton law so that:
f=μ*N the friction force is equal to coefficient of static friction multiply the normal force (m*g).
f=m.a=μ*N= m*a= μ*m*g= m*a
then
a=μ*g=0.32*9.8m/s^2= 3.14 m/s^2
With this value we can determine the short distance to stop the train
as follows:
x= vo*t- (a/2)* t^2
Vf=0= vo-a*t then t=vo/a
Finally; x=vo*vo/a-a/2*(vo/a)^2=vo^2/2a= (49*1000/3600)^2/(2*3.14)=29.50 m
Answer:
you can use math as a banker, a doctor, a scientist, the president probably uses math, you use math to see how much less juice you gave your sibling, and you can use math to help in collage! (sorry if its wrong tell me if it is)
Answer:
ρ = 830.32 kg/m³
Explanation:
Given that
Oil head = 12.2 m
h= 12.2 m
Pressure P = 1.013 x 10⁵ Pa
Lets take density of the liquid =ρ
The pressure due to liquid P given as
P = ρ g h
Now by putting the all values in the above equation
1.013 x 10⁵ Pa = ρ x 10 x 12.2 ( take g =10 m/s²)
ρ = 830.32 kg/m³
Therefore the density of oil is 830.32 kg/m³