Yes.
-- 'Acceleration' does NOT mean 'speeding up'.
It means ANY change in the speed OR direction of motion ...
speeding up, slowing down, or turning.
-- If an object is NOT moving in straight line at constant speed,
then its motion is accelerated.
-- In circular motion, or even just going around a curve,
the object is accelerating, because its direction is constantly
changing, even if its speed is constant.
Answer:

Explanation:
The centripetal force acting on the car must be equal to mv²/R, where m is the mass of the car, v its speed and R the radius of the curve. Since the only force acting on the car that is in the direction of the center of the circle is the frictional force, we have by the Newton's Second Law:

But we know that:

And the normal force is given by the sum of the forces in the vertical direction:

Finally, we have:

So, the minimum value for the coefficient of friction is 0.27.
Answer:
E = 3.04 10⁻⁵ N / C
Explanation:
In this problem we can use the kinematics to find how long it takes the electron to travel the plates
Let's start by reducing the magnitudes to the SI system
vₓ = 5.35 10⁶ m / s
x = 2 cm = 2 10⁻² m
y = 1 cm = 1 10⁻² m
x = vₓ t
t = x / vₓ
t = 2 10⁻² / 5.35 10⁶
t = 3,738 10⁻⁹ s
This time is also the time it takes for vertical movement to go from the center to the plate, let's look for acceleration with Newton's second law
F = m a
a = F / m = e E / m
y =
+ ½ a t²
= 0
We replace
y = ½ e / m E t²
E = 2 y m / e t²
Let's calculate
E = 2 1 10⁻² 9.1 10⁻³¹ / (1.6 10⁻¹⁹ 3,738 10⁻⁹)
E = 18.2 10⁻³³ / 5.98 10⁻²⁸
E = 3.04 10⁻⁵ N / C
Answer:
the net force will be 50 N Up
Explanation:
because left and right forces balance each other and by calculating up and down forces , force exerting upward is 50 more than down .
hence, net force is 50N Up