Answer:
Wavelength = 3.74 m
Explanation:
In order to find wavelength in "metres", we must first convert megahertz to hertz.
1 MHz = 1 × 10⁶ Hz
80.3 Mhz = <em>x</em>
<em>x </em>= 80.3 × 1 × 10⁶ = 8.03 × 10⁷ Hz
The formula between wave speed, frequency and wavelength is:
v = fλ [where v is wave speed, f is frequency and λ is wavelength]
Reorganise the equation and make λ the subject.
λ = v ÷ f
λ = (3 × 10⁸) ÷ (8.03 × 10⁷)
λ = 3.74 m [rounded to 3 significant figures]
Answer: a) 3.85 days
b) 10.54 days
Explanation:-
Expression for rate law for first order kinetics is given by:

where,
k = rate constant = ?
t = time taken for decomposition = 3 days
a = let initial amount of the reactant = 100 g
a - x = amount left after decay process = 
First we have to calculate the rate constant, we use the formula :
Now put all the given values in above equation, we get


a) Half-life of radon-222:


Thus half-life of radon-222 is 3.85 days.
b) Time taken for the sample to decay to 15% of its original amount:
where,
k = rate constant = 
t = time taken for decomposition = ?
a = let initial amount of the reactant = 100 g
a - x = amount left after decay process = 


Thus it will take 10.54 days for the sample to decay to 15% of its original amount.
Answer:
Q = 40.1 degrees
Explanation:
Given:
- The weight of the timber W = 670 N
- Water surface level from pivot y = 2.1 m
- The specific density of water Y = 9810 N / m^3
- Dimension of timber = (0.15 x 0.15 x 0.0036) m
Find:
- The angle of inclination Q that the timber makes with the horizontal.
Solution:
- Calculate the Flamboyant Force F_b acting upwards at a distance x along the timber, which is unknown:
F_b = Y * V_timber
F_b = 9810*0.15*0.15*x
F_b = 226.7*x N
- Take static equilibrium conditions for the timber, and take moments about the pivot:
(M)_p = 0
W*0.5*3.6*cos(Q) - x/2 * F_b*cos(Q) = 0
- Plug values in:
670*0.5*3.6 - x^2 * 0.5*226.7 = 0
x^2 = 1206 / 113.35
x = 3.26 m
- Now use the value of x and vertical height y to compute the angle of inclination to be:
sin(Q) = y / x
sin(Q) = 2.1 / 3.26
Q = sin^-1 (0.6441718)
Q = 40.1 degrees
Answer:
The hunter should aim directly at the perched monkey because the tranquilizer dart will fall away from the line sight at the same rate that the monkey falls from its perch.
Tan theta = 9 / 90 = .1 so theta = 5.71 deg
The time for the monkey to reach the ground is
t = (2 h / g)^1/2 = (18 / 9.8)^1/2 = 1.36 sec
So the horizontal speed of the dart must be at least
Vx = 90 m / 1.36 sec = 66.4 m/s
Vx = V cos theta
V = 66.4 m/s / cos 5.71 = 66.7 m/s
Is there any types of answer to get an idea