Hello! My name is Zalgo and I am here to help you out on this concluding day. The answer would be C);lower. The reason it would be lower is because the hottest color of flames would be blue. Considering the way a start emits light is fire, this would be the most logical reason for it.
I hope that this helps! :P
"Stay Brainly and stay proud!" - Zalgo
(By the way, do you mind marking me as Brainliest? I'd greatly appreciate it! Thanks! X3)
Answer:
x₂ = 1.33 m
Explanation:
For this exercise we must use the rotational equilibrium condition, where the counterclockwise rotations are positive and the zero of the reference system is placed at the turning point on the wall
Στ = 0
W₁ x₁ - W₂ x₂ = 0
where W₁ is the weight of the woman, W₂ the weight of the table.
Let's find the distances.
Since the table is homogeneous, its center of mass coincides with its geometric center, measured at zero.
x₁ = 2.5 -1.5 = 1 m
The distance of the person is x₂ measured from the turning point, at the point where the board begins to turn the girl must be on the left side so her torque must be negative
x₂ =
let's calculate
x₂ =
x₂ = 1.33 m
Answer:
R = 9.85 ohm , r = 0.85 ohm
Explanation:
Let the two resistances by r and R.
when they are connected in series:
V = 12 V
i = 1.12 A
The equivalent resistance when they are connected in series is
Rs = r + R
So, By using Ohm's law
V = i Rs
Rs = V / i = 12 / 1.12 = 10.7 ohm
R + r = 10.7 ohm .... (1)
When they are connected in parallel:
V = 12 V
i = 9.39 A
The equivalent resistance when they are connected in parallel

So, By using Ohm's law
V = i Rp
Rp = V / i = 12 / 9.39 = 1.28 ohm
.... (2)
by substituting the value of R + r from equation (1) in equation (2), we get
r R = 8.36 ..... (3)

..... (4)
By solvng equation (1) and (4), we get
R = 9.85 ohm , r = 0.85 ohm
Explanation:
The center of gravity is near the grip and does not change during throw. "Throwing through the tip," a popular term of how to throw a javelin, means throwing through the grip or center of gravity. The center of pressure is the aerodynamic force of drag and lift on the javelin.
Answer:
B. 24.2 m/s
Explanation:
Given;
mass of the roller coaster, m = 450 kg
height of the roller coaster, h = 30 m
The maximum potential energy of the roller coaster due to its height is given by;



Therefore, the maximum speed of the roller coaster is 24.2 m/s.