I am not so sure about this it is too difficult
Answer:
16.9000000000000001 J
Explanation:
From the given information:
Let the initial kinetic energy from point A be
= 1.9000000000000001 J
and the final kinetic energy from point B be
= ???
The charge particle Q = 6 mC = 6 × 10⁻³ C
The change in the electric potential from point B to A;
i.e. V_B - V_A = -2.5 × 10³ V
According to the work-energy theorem:
-Q × ΔV = ΔK





From an energy balance, we can use this formula to solve for the angular speed of the chimney
ω^2 = 3g / h sin θ
Substituting the given values:
ω^2 = 3 (9.81) / 53.2 sin 34.1
ω^2 = 0.987 /s
The formula for radial acceleration is:
a = rω^2
So,
a = 53.2 (0.987) = 52.494 /s^2
The linear velocity is:
v^2 = ar
v^2 = 52.949 (53.2) = 2816.887
The tangential acceleration is:
a = r v^2
a = 53.2 (2816.887)
a = 149858.378 m/s^2
If the tangential acceleration is equal to g:
g = r^2 3g / sin θ
Solving for θ
θ = 67°
Answer:
78 km/h
Explanation:
If I normally drive a 12 hour trip at an average speed of 100 km/h, my destination has a total distance of:
- 100 km/h · 12 h = 1,200 km
Today, I drive the first 2/3 of the distance at 116 km/h. Let's first calculate what 2/3 of the normal distance is.
I've driven 800 km already. I need to drive 400 km more to reach my final destination. I need to figure out my average speed during this last 1/3 of the distance.
To do this, I first need to calculate how much time I spent driving 116 km/h for the past 800 km.
- 116 km/1 h = 800 km/? h
- 800 = 116 · ?
- ? = 800/116
- ? = 6.89655172
I spent 6.89655172 hours driving during the first 2/3 of the distance.
Now, I need to subtract this value from 12 hours to find the remaining time I have left.
- 12 h - 6.89655172 h = 5.10344828 h
Using this remaining time and my remaining distance, I can calculate my average speed.
- ? km/1 hr = 400 km/5.10344828 h
- 5.10344828 · ? = 400
- ? = 400/5.10344828
- ? = 78.3783783148
My average speed during the last third of the distance is around 78 km/h.