Answer:
a)W=12.62 kJ/mol
b)W=12.59 kJ/mol
Explanation:
At T = 100 °C the second and third virial coefficients are
B = -242.5 cm^3 mol^-1
C = 25200 cm^6 mo1^-2
Now according isothermal work of one mole methyl gas is
W=-
a=
b=
from virial equation

And

a=
b=
Now calculate V1 and V2 at given condition

Substitute given values
= 1 x 10^5 , T = 373.15 and given values of coefficients we get

Solve for V1 by iterative or alternative cubic equation solver we get

Similarly solve for state 2 at P2 = 50 bar we get

Now

a=241.33
b=30780
After performing integration we get work done on the system is
W=12.62 kJ/mol
(b) for Z = 1 + B' P +C' P^2 = PV/RT by performing differential we get
dV=RT(-1/p^2+0+C')dP
Hence work done on the system is

a=
b=
by substituting given limit and P = 1 bar , P2 = 50 bar and T = 373 K we get work
W=12.59 kJ/mol
The work by differ between a and b because the conversion of constant of virial coefficients are valid only for infinite series
Answer:
See explanation
Explanation:
The magnetic force is
F = qvB sin θ
We see that sin θ = 1, since the angle between the velocity and the direction of the field is 90º. Entering the other given quantities yields
F
=
(
20
×
10
−
9
C
)
(
10
m/s
)
(
5
×
10
−
5
T
)
=
1
×
10
−
11
(
C
⋅
m/s
)
(
N
C
⋅
m/s
)
=
1
×
10
−
11
N
Answer:
G = $37,805.65
Explanation:
I found this on another site:
475,000 = 25,000(P/A,10%,6) + G(P/G,10%,6)
475,000 = 25,000(4.3553) + G(9.6842)
9.6842G = 366,117.50
G = $37,805.65
Annual Payment where F is accumulated sum of amount, n is number of years and i is annual rate of interest. The standard notation equation is in the image since i can’t type it-
Answer:
because burning rubber increases the grip power