1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Crank
2 years ago
15

A rigid tank whose volume is 2 m3, initially containing air at 1 bar, 295 K, is connected by a valve to a large vessel holding a

ir at 6 bar, 295 K. The valve is opened only as long as required to fill the tank with air to a pressure of 6 bar and a temperature of 350 K. Assuming the ideal gas model for the air, determine the heat transfer between the tank contents and the surroundings, in kJ
Engineering
1 answer:
bazaltina [42]2 years ago
8 0

Answer:

Q_{cv}=-339.347kJ

Explanation:

First we calculate the mass of the aire inside the rigid tank in the initial and end moments.

P_iV_i=m_iRT_i (i could be 1 for initial and 2 for the end)

State1

1bar*|\frac{100kPa}{1}|*2=m_1*0.287*295

m_1=232kg

State2

8bar*|\frac{100kPa}{1bar}|*2=m_2*0.287*350

m_2=11.946

So, the total mass of the aire entered is

m_v=m_2-m_1\\m_v=11.946-2.362\\m_v=9.584kg

At this point we need to obtain the properties through the tables, so

For Specific Internal energy,

u_1=210.49kJ/kg

For Specific enthalpy

h_1=295.17kJ/kg

For the second state the Specific internal Energy (6bar, 350K)

u_2=250.02kJ/kg

At the end we make a Energy balance, so

U_{cv}(t)-U_{cv}(t)=Q_{cv}-W{cv}+\sum_i m_ih_i - \sum_e m_eh_e

No work done there is here, so clearing the equation for Q

Q_{cv} = m_2u_2-m_1u_1-h_1(m_v)

Q_{cv} = (11.946*250.02)-(2.362*210.49)-(295.17*9.584)

Q_{cv}=-339.347kJ

The sign indicates that the tank transferred heat<em> to</em> the surroundings.

You might be interested in
Technician A says that if fuel pump pressure is correct, fuel pump volume will be correct as well. Technician B says that a fuel
guajiro [1.7K]

Answer:

Technician B only

Explanation:

hope this helps :)

5 0
2 years ago
Steam flows steadily through an adiabatic turbine. The inlet conditions of the steam are 10 MPa, 450°C, and 80 m/s, and the exit
8090 [49]

Answer:

a) The change in Kinetic energy, KE = -1.95 kJ

b) Power output, W = 10221.72 kW

c) Turbine inlet area, A_1 = 0.0044 m^2

Explanation:

a) Change in Kinetic Energy

For an adiabatic steady state flow of steam:

KE = \frac{V_2^2 - V_1^2}{2} \\.........(1)

Where Inlet velocity,  V₁ = 80 m/s

Outlet velocity, V₂ = 50 m/s

Substitute these values into equation (1)

KE = \frac{50^2 - 80^2}{2} \\

KE = -1950 m²/s²

To convert this to kJ/kg, divide by 1000

KE = -1950/1000

KE = -1.95 kJ/kg

b) The power output, w

The equation below is used to represent a  steady state flow.

q - w = h_2 - h_1 + KE + g(z_2 - z_1)

For an adiabatic process, the rate of heat transfer, q = 0

z₂ = z₁

The equation thus reduces to :

w = h₁ - h₂ - KE...........(2)

Where Power output, W = \dot{m}w..........(3)

Mass flow rate, \dot{m} = 12 kg/s

To get the specific enthalpy at the inlet, h₁

At P₁ = 10 MPa, T₁ = 450°C,

h₁ = 3242.4 kJ/kg,

Specific volume, v₁ = 0.029782 m³/kg

At P₂ = 10 kPa, h_f = 191.81 kJ/kg, h_{fg} = 2392.1 kJ/kg, x₂ = 0.92

specific enthalpy at the outlet, h₂ = h_1 + x_2 h_{fg}

h₂ = 3242.4 + 0.92(2392.1)

h₂ = 2392.54 kJ/kg

Substitute these values into equation (2)

w = 3242.4 - 2392.54 - (-1.95)

w = 851.81 kJ/kg

To get the power output, put the value of w into equation (3)

W = 12 * 851.81

W = 10221.72 kW

c) The turbine inlet area

A_1V_1 = \dot{m}v_1\\\\A_1 * 80 = 12 * 0.029782\\\\80A_1 = 0.357\\\\A_1 = 0.357/80\\\\A_1 = 0.0044 m^2

3 0
3 years ago
How can any student outside apply for studying engineering at Cambridge University​
telo118 [61]
Admission to the Engineering course at Cambridge is highly competitive, both in terms of the numbers and quality of applicants. In considering applicants, Colleges look for evidence both of academic ability and of motivation towards Engineering. There are no absolute standards required of A Level achievement, but it should be noted that the average entrant to the Department has three A* grades. You need to get top marks in Maths and Physics.All Colleges strongly prefer applicants for Engineering to be taking a third subject that is relevant to Engineering.
Hope that helps and good luck if you are applying. Can you please mark this as brainliest and press the thank you button and if you have any further questions please let me know!!
3 0
3 years ago
Steam enters an adiabatic turbine at 400◦C, 2 MPa pressure. The turbine has an isentropic efficiency of 0.9. The exit pressure i
pychu [463]

Answer:

Explanation:

Find attached the solution

8 0
2 years ago
Who can help me with electric systems for cars?
hoa [83]

Answer: i can see if i can what is the problem

Explanation:

7 0
3 years ago
Other questions:
  • A Michelson interferometer operating at a 500 nm wavelength has a 3.73-cm-long glass cell in one arm. To begin, the air is pumpe
    9·1 answer
  • Where do I buy a 1997 MK4 Toyota Supra twin turbo manual for cheap
    11·1 answer
  • The small washer is sliding down the cord OA. When it is at the midpoint, its speed is 28 m/s and its acceleration is 7 m/s 2 .
    13·1 answer
  • How does running an electric current through wire cause a magnetic field?
    6·1 answer
  • When it comes to making a good impression in a work setting, it does not apply to an initial contact, since both people are meet
    9·1 answer
  • Buying shop supplies from the shop owner to work on your own car at home is an ethical practice.
    14·1 answer
  • Do you understand entropy? Why the concept of entropy is difficult to engineering students?
    11·1 answer
  • When testing a compressor with an ohm meter, a technician read 2 ohms between the start terminal and the case of the compressor.
    5·1 answer
  • The guy wires AB and AC are attached to the top of the transmission tower. The tension in cable AB is 8.7 kN. Determine the requ
    8·1 answer
  • In a device to produce drinking water, humid air at 320C, 90% relative humidity and 1 atm is cooled to 50C at constant pressure.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!