1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iVinArrow [24]
3 years ago
5

The following liquids are stored in a storage vessel at 1 atm and 25°C. The vessels are vented with air. Determine whether the e

quilibrium vapor above the liquid will be flammable. The liquids are:________.
a. Acetone
b. Benzene
c. Cyclohexane
d. Toluene Problem
Engineering
1 answer:
defon3 years ago
4 0

Answer:

The liquids are TOLUENE because the equilibrum vapor above it will be flammable ( D )

Explanation:

Liquids stored at : 1 atm , 25⁰c  and they are vented with air

Determining whether the equilibrum vapor above the liquid will be flammable

We can determine this by using Antoine equation to calculate saturation vapor pressure also apply Dalton's law to determine the volume % concentration of air and finally we compare answer to flammable limits to determine which liquid will be flammable

A) For acetone

using the Antoine equation to calculate saturation vapor pressure

In(P^{out} ) = A - \frac{B}{C + T}

values gotten appendix E ( chemical process safety (3rd edition) )

A = 16.6513

B = 2940.46

C = -35.93

T = 298 k      input values into Antoine equation

therefore ; p^{out} = 228.4 mg

calculate volume percentage using Dalton's law

= V% = (saturation vapor pressure / pressure ) *100

         = (228.4 mmHg / 760 mmHg) * 100 = 30.1%

The liquid is not flammable because its UFL = 12.8%

B) For Benzene

using the Antoine equation to calculate saturation vapor pressure

In(P^{out} ) = A - \frac{B}{C + T}

values gotten appendix E ( chemical process safety (3rd edition) )

A= 15.9008

B = 2788.52

C = -52.36

T = 298 k   input values into the above equation

p^{out} = 94.5 mmHg

calculate volume percentage using Dalton's law

V% = (saturation vapor pressure / pressure ) *100

      = (94.5 / 760 ) * 100 = 12.4%

Benzene is not flammable under the given conditions because its UFL =7.1%

C) For cyclohexane

using the Antoine equation to calculate saturation vapor pressure

In(P^{out} ) = A - \frac{B}{C + T}

values gotten appendix E ( chemical process safety (3rd edition) )

A = 15.7527

B = 2766.63

c = -50.50

T = 298 k

solving the above equation using the given values

p^{out} = 96.9 mmHg

calculate volume percentage using Dalton's law

V% = (saturation vapor pressure / pressure ) *100

      = ( 96.9 mmHg /760 mmHg) * 100 = 12.7%

cyclohexane not flammable under the given conditions because its UFL= 8%

D) For Toluene

using the Antoine equation to calculate saturation vapor pressure

In(P^{out} ) = A - \frac{B}{C + T}

values gotten from appendix E ( chemical process safety (3rd edition) )

A = 16.0137

B = 3096.52

C = -53.67

T = 298 k

solving the above equation using the given values

p^{out} = 28.2 mmHg

calculate volume percentage using Dalton's law

V% = (saturation vapor pressure / pressure ) *100

     = (28.2 mmHg / 760 mmHg) * 100 = 3.7%

Toluene is flammable under the given conditions because its UFL= 7.1%

You might be interested in
Which permission do you need to shoot on the owner’s property?
Elena L [17]

Answer:

filming permit,

( MARK ME BRAINLIEST!!)

4 0
3 years ago
Write a C++ program to display yearly calendar. You need to use the array defined below in your program. // the first number is
ddd [48]

Answer:

//Annual calendar

#include <iostream>

#include <string>

#include <iomanip>

void month(int numDays, int day)

{

int i;

string weekDays[] = {"Su", "Mo", "Tu", "We", "Th", "Fr", "Sa"};

// Header print

      cout << "\n----------------------\n";

      for(i=0; i<7; i++)

{

cout << left << setw(1) << weekDays[i];

cout << left << setw(1) << "|";

}

cout << left << setw(1) << "|";

      cout << "\n----------------------\n";

      int firstDay = day-1;

      //Space print

      for(int i=1; i< firstDay; i++)

          cout << left << setw(1) << "|" << setw(2) << " ";

      int cellCnt = 0;

      // Iteration of days

      for(int i=1; i<=numDays; i++)

      {

          //Output days

          cout << left << setw(1) << "|" << setw(2) << i;

          cellCnt += 1;

          // New line

          if ((i + firstDay-1) % 7 == 0)

          {

              cout << left << setw(1) << "|";

              cout << "\n----------------------\n";

              cellCnt = 0;

          }

      }

      // Empty cell print

      if (cellCnt != 0)

      {

          // For printing spaces

          for(int i=1; i<7-cellCnt+2; i++)

              cout << left << setw(1) << "|" << setw(2) << " ";

          cout << "\n----------------------\n";

      }

}

int main()

{

int i, day=1;

int yearly[12][2] = {{1,31},{2,28},{3,31},{4,30},{5,31},{6,30},{7,31},{8,31},{9,30},{10,31},{11,30},{12,31}};

string months[] = {"January",

"February",

"March",

"April",

"May",

"June",

"July",

"August",

"September",

"October",

"November",

"December"};

for(i=0; i<12; i++)

{

//Monthly printing

cout << "\n Month: " << months[i] << "\n";

month(yearly[i][1], day);

if(day==7)

{

day = 1;

}

else

{

day = day + 1;

}

cout << "\n";

}

return 0;

}

//end

3 0
3 years ago
A traffic flow has density 61 veh/km when the speed is 59 veh/hr. If a flow has a jam density of 122 veh/km, what is the maximum
antoniya [11.8K]

Since this traffic flow has a jam density of 122 veh/km, the maximum flow is equal to 3,599 veh/hr.

<u>Given the following data:</u>

  • Density = 61 veh/km.
  • Speed = 59 km/hr.
  • Jam density = 122 veh/km.

<h3>How to calculate the maximum flow.</h3>

According to Greenshield Model, maximum flow is given by this formula:

q_{max}=\frac{V_f \times K_i}{4}

<u>Where:</u>

  • V_f is the free flow speed.
  • K_i is the Jam density.

In order to calculate the free flow speed, we would use this formula:

V_f =2 V\\\\V_f =2\times 59\\\\V_f=118\;km/hr

Substituting the parameters into the model, we have:

q_{max}=\frac{118 \times 122}{4}\\\\q_{max}=\frac{14396}{4}

Max flow = 3,599 veh/hr.

Read more on traffic flow here: brainly.com/question/15236911

6 0
2 years ago
The simply supported beam in the Figure has a rectangular cross-section 150 mm wide and 240 mm high.
8_murik_8 [283]
Same question idea but different values... I hope I helped you... Don't forget to put a heart mark

4 0
3 years ago
The current entering the positive terminal of a device is i(t)= 6e^-2t mA and the voltage across the device is v(t)= 10di/dtV.
liberstina [14]

Answer:

a) 2,945 mC

b) P(t) = -720*e^(-4t) uW

c) -180 uJ

Explanation:

Given:

                           i (t) = 6*e^(-2*t)

                           v (t) = 10*di / dt

Find:

( a) Find the charge delivered to the device between t=0 and t=2 s.

( b) Calculate the power absorbed.

( c) Determine the energy absorbed in 3 s.

Solution:

-  The amount of charge Q delivered can be determined by:                      

                                       dQ = i(t) . dt

                  Q = \int\limits^2_0 {i(t)} \, dt = \int\limits^2_0 {6*e^(-2t)} \, dt = 6*\int\limits^2_0 {e^(-2t)} \, dt

- Integrate and evaluate the on the interval:

                   = 6 * (-0.5)*e^-2t = - 3*( 1 / e^4 - 1) = 2.945 C

- The power can be calculated by using v(t) and i(t) as follows:

                 v(t) = 10* di / dt = 10*d(6*e^(-2*t)) /dt

                 v(t) = 10*(-12*e^(-2*t)) = -120*e^-2*t mV

                 P(t) = v(t)*i(t) = (-120*e^-2*t) * 6*e^(-2*t)

                 P(t) = -720*e^(-4t) uW

- The amount of energy W absorbed can be evaluated using P(t) as follows:

                 W = \int\limits^3_0 {P(t)} \, dt = \int\limits^2_0 {-720*e^(-4t)} \, dt = -720*\int\limits^2_0 {e^(-4t)} \, dt

- Integrate and evaluate the on the interval:

                  W = -180*e^-4t = - 180*( 1 / e^12 - 1) = -180uJ

6 0
3 years ago
Other questions:
  • A 12-mm-diameter cylindrical jet of water discharges vertically into the ambient air. Due to surface tension the pressure inside
    14·1 answer
  • A common chef's knife is single-beveled.<br> TRUE<br> FALSE
    10·1 answer
  • Summarize three attributes that are important for an engineer to possess.
    13·1 answer
  • Is cross flow more efficient or counter flow
    13·1 answer
  • A closed, rigid tank is filled with a gas modeled as an ideal gas, initially at 27°C and gauge pressure of 300 kPa. The gas is h
    9·1 answer
  • A life cycle assessment (LCA) determines the environmental impact at all stages of a product's life cycle, including production,
    12·1 answer
  • ⚠️I mark BRIANLIST ⚠️The same engineering teams are able to design and develop the different subsystems for an airplane.
    5·2 answers
  • Recall the steps of the engineering design process. Compare and contrast the
    9·1 answer
  • Quelles sont les types de carburant utilisés en aviation
    15·1 answer
  • Instructions: For each problem, identify the appropriate test statistic to be use (t test or z-test). Then compute z or t value.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!