Answer:
a) Q1= Q2= 11.75×10^-6Coulombs
b) Q1 =15×10^-6coulombs
Q2 = 38.75×10^-6coulombs
Explanation:
a) For a series connected capacitors C1 and C2, their equivalent capacitance C is expressed as
1/Ct = 1/C1 + 1/C2
Given C1 = 3.00 μF C2 = 7.75μF
1/Ct = 1/3+1/7.73
1/Ct = 0.333+ 0.129
1/Ct = 0.462
Ct = 1/0.462
Ct = 2.35μF
V = 5.00Volts
To calculate the charge on each each capacitors, we use the formula Q = CtV where Cf is the total equivalent capacitance
Q = 2.35×10^-6× 5
Q = 11.75×10^-6Coulombs
Since same charge flows through a series connected capacitors, therefore Q1= Q2=
11.75×10^-6Coulombs
b) If the capacitors are connected in parallel, their equivalent capacitance will be C = C1+C2
C = 3.00 μF + 7.75 μF
C = 10.75 μF
For 3.00 μF capacitance, the charge on it will be Q1 = C1V
Q1 = 3×10^-6 × 5
Q1 =15×10^-6coulombs
For 7.75 μF capacitance, the charge on it will be Q2 = 7.75×10^-6×5
Q2 = 38.75×10^-6coulombs
Note that for a parallel connected capacitors, same voltage flows through them but different charge, hence the need to use the same value of the voltage for both capacitors.
Answer:
454,320 joules
Explanation:
The work done on an object is equal to its change in kinetic energy: Change in KE = F × d.
Plug the values for F and d into the formula and solve:
Change in KE = 2,524 × 180
= 454,320 joules
The roller coaster gains 454,320 joules of energy from the work done on it by the chain.
Inconsistent. You should take three readings at least.
50 degrees because the would most likely equal out
Answer:Explanation: According to Newton's third law, the force exerted by the bat hitting the ball will be equal in magnitude but opposite in direction of the force the ball exerts on the bat. Generally, your arms are stiff when you hit the ball forward, so you will not feel the bat "recoiling".
Explanation: