Answer:
(a) 1320 W
(b) 480 W
(c) E':E ≈ 11:2
Explanation:
(a) Applying,
P' = VI'................. Equation 1
Where P' = Power of the blow-dryer, V = Voltage, I = current rating of the blow-dryer.
From the question,
Given: V = 120 V, I' = 11 A
Substitute these values into equation 1
P = (120×11)
P = 1320 W
(b) Similarly,
P = VI................... Equation 2
Where P = Power of the vacuum cleaner. I = current rating of the vacuum cleaner.
Also Given: I = 4 A,
Therefore
P = 4(120)
P = 480 W
(c)
E' = P'/t'............. Equation 3
E = P/t................ Equation 4
Where E' = Energy of the blow-dryer, t' = time of use of the blow-dryer, E = Energy of the vacuum cleaner, t = time of use of the vacuum cleaner
From the question,
Given: t' = 15 minutes = (15×60) = 900 seconds, t = 30 minutes = (30×60) = 1800 seconds
Substitute these values into equation 3 and 4
E' = 1320/900
E' = 1.47 J,
E = 480/1800
E = 0.267
Therefore,
E':E = 1.47:0.267
E':E ≈ 11:2
Spacecraft used is "Friendship 7". Hope it helps.
If only I was smart then I could help you :/ no but like for real im madddd dumb sorry :(
A) To calculate the charge of each coin, we must apply the expression of the Coulomb's Law:
F=K(q1xq2)/r²
F: The magnitud of the force between the charges. (F=2.0 N).
K: Constant of proporcionality of the Coulomb's Law (K=9x10^9 Nxm²/C²).
q1 and q2: Electrical charges.
r: The distance between the charges (r=1.35 m).
We have the values of F, K and r, so we can calculate q1xq2, because both<span> coins have identical charges:
</span>
q1xq2=(r²xF)/K
q1xq2=(1.35 m)²(2.0 N)/9x10^9 Nxm²/C²
q1xq2=3x10^-10 C
q1=q2=(<span>3x10^-10 C)/2
</span>Then, the charge of each coin, is:
<span>
q1=1.5x</span><span>10^-10 C
</span>q2=1.5x10^-10 C
B) <span>Would the force be classified as a force of attraction or repulsion?
</span>
It is a force of repulsion, because both coins have identical charges and both are postive. In others words, when two bodies have identical charges (positive charges or negative charges), the force is of repulsion.
The time elapsed is 9 seconds
Explanation:
The motion of the ball is a uniformly accelerated motion (a motion with constant acceleration), so we can use the following suvat equation:
where
:
v is the final velocity of the ball
u is the initial velocity
a is the acceleration
t is the time elapsed
For the ball in this problem, we have:
u = 3 m/s is the initial velocity
v = 34.5 m/s is the final velocity
is the acceleration
Solving for t, we find the time taken for this change in velocity:

Learn more about acceleration:
brainly.com/question/9527152
brainly.com/question/11181826
brainly.com/question/2506873
brainly.com/question/2562700
#LearnwithBrainly