Answer:
0.06 Kg
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 0 m/s
Final velocity (v) = 3.0 m/s
Distance (s) = 0.09 m
Net Force (F) = 3 N
Mass (m) =?
Next, we shall determine the acceleration of the object. This can be obtained as follow:
Initial velocity (u) = 0 m/s
Final velocity (v) = 3.0 m/s
Distance (s) = 0.09 m
Acceleration (a) =?
v² = u² + 2as
3² = 0² + (2 × a × 0.09)
9 = 0 + 0.18a
9 = 0.18a
Divide both side by 0.18
a = 9 / 0.18
a = 50 m/s²
Finally, we shall determine the mass of the object. This can be obtained as follow:
Net Force (F) = 3 N
Acceleration (a) = 50 N
Mass (m) =?
F = ma
3 = m × 50
Divide both side by 50
m = 3 / 50
m = 0.06 Kg
Therefore, the mass of the object is 0.06 Kg
Answer:
Wait, that can happen? I'm sorry.
Explanation:
Djdjdjddjddkjddiejrjrrjrjrkrkrkrjrjr
Answer:
p=1
Explanation:
Well me know that v=m/s
and that a=m/s^2
so

Note: We don't take into account 2 because it's a scalar, it doesn't have units so it doesn't add anything to the equation.
Answer:
Work Done = 67.5 J
Explanation:
First we find the value of spring constant (k) using Hooke's Law. Hooke's is formulated as:
F = kx
where,
F = Force Applied = 450 N
k = Spring Constant = ?
x = Stretched Length = 30 cm = 0.3 m
Therefore,
450 N = k(0.3 m)
k = 450 N/0.3 m
k = 1500 N/m
Now, the formula for the work done in stretching the spring is given as:
W = (1/2)kx²
Where,
W = Work done = ?
k = 1500 N/m
x = 70 cm - 40 cm = 0.3 m
Therefore,
W = (1/2)(1500 N/m)(0.3 m)²
<u>W = 67.5 J</u>