Answer:
Explanation:
Time dilation formula is
T = T₀ / √ 1-v²/c²
T₀ is time elapsed in moving reference , T time elapsed in stationary reference.
Here T₀ = 1 second
T = 1/√ 1-0.9² = 1/.4358 = 2.3 second
So 2.3 second will pass for each second on moving reference.
The computation would be:moles = mass/ Molar Mass, but we are looking for the mass, so rearranging, will give us: mass = moles x MM
Q = moles x Hf
Q = (mass/MM) x Hf
mass = (Q x MM) / Hf
= (1.50-kJ x 18.0-g/mol) / 6.01-kJ/mol
=4.49 g H20 is the answer
The speed of the wave in the string is 83.4 m/s
Explanation:
For a standing wave in a string, the speed of the wave is given by the equation:

where
L is the length of the string
T is the tension in the string
m is the mass of the string
In this problem, we have:
L = 0.72 m
m = 4.2 g = 0.0042 kg
T = 84.1 N
Solving the equation, we find the speed of the wave:

Learn more about waves:
brainly.com/question/5354733
brainly.com/question/9077368
#LearnwithBrainly
Answer:
2.27kg
Explanation:
The Potential energy gained = Force gravity× Height
Force gravity on the ball is GPE/ height
56.8/2.5=22.72N
the mass = 22.72/10= 2.27kg