Answer:
13.309 m/s²
Explanation:
Length from shoulder to hand, l = 30 cm = 0.3 m
initial velocity, u = 1 m/s
final velocity, v = 2.5 m/s
time, t = 3 s
Let the tangential acceleration is a.
by using first equation of motion
v = u + at
2.5 = 1 + 3 a
a = 0.5 m/s²
Let the centripetal acceleration is a'.
a' = v'²/l
a' = 2 x 2 / 0.3
a' = 13.3 m/s²
The tangential acceleration and the centripetal acceleration are both perpendicular to each other. So, the net acceleration is given by


A = 13.309 m/s²
155Ω
Explanation:
R = R ref ( 1 + ∝ ( T - Tref)
where R = conduction resistance at temperature T
R ref = conductor resistance at reference temperature
∝ = temperature coefficient of resistance for conductor
T = conduction temperature in degrees Celsius
T ref = reference temperature that ∝ is specified at for the conductor material
T = 600 k - 273 k = 327 °C
Tref = 300 - 273 K = 27 °C
R = 50 Ω ( 1 + 0.007 ( 327 - 27) )
R = 155Ω
Answer: A
Explanation: We know that f=p*n
f=50*300=15000 Hz = 15kHz.
Have a great day! <3
Answer is B raindrops conduct electricity from clouds to the ground.
Lightning is formed when air, water droplets, and even ice crystals rub violently against each other inside a thundercloud, creating two opposite kinds of electrical charge
Objects absorb and reflect light differently depending on their physical characteristics, such as their shape or composition. Thanks to the reflection we can see the objects. Reflection can be defined as the change of direction of a wave, which, when in contact with the separation surface between two changing means, returns to the point where it originated. When the light illuminates the object, such as the tree, the rays of light will disperse in all directions allowing observation.
The correct answer is A. From every point on the surface of the tree, and in every direction