![\stackrel{\textit{\LARGE Line A}}{(\stackrel{x_1}{-8}~,~\stackrel{y_1}{5})\qquad (\stackrel{x_2}{-5}~,~\stackrel{y_2}{4})} ~\hfill \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{4}-\stackrel{y1}{5}}}{\underset{run} {\underset{x_2}{-5}-\underset{x_1}{(-8)}}} \implies \cfrac{4 -5}{-5 +8}\implies -\cfrac{1}{3} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cstackrel%7B%5Ctextit%7B%5CLARGE%20Line%20A%7D%7D%7B%28%5Cstackrel%7Bx_1%7D%7B-8%7D~%2C~%5Cstackrel%7By_1%7D%7B5%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B-5%7D~%2C~%5Cstackrel%7By_2%7D%7B4%7D%29%7D%20~%5Chfill%20%5Cstackrel%7Bslope%7D%7Bm%7D%5Cimplies%20%5Ccfrac%7B%5Cstackrel%7Brise%7D%20%7B%5Cstackrel%7By_2%7D%7B4%7D-%5Cstackrel%7By1%7D%7B5%7D%7D%7D%7B%5Cunderset%7Brun%7D%20%7B%5Cunderset%7Bx_2%7D%7B-5%7D-%5Cunderset%7Bx_1%7D%7B%28-8%29%7D%7D%7D%20%5Cimplies%20%5Ccfrac%7B4%20-5%7D%7B-5%20%2B8%7D%5Cimplies%20-%5Ccfrac%7B1%7D%7B3%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\stackrel{\textit{\LARGE Line B}}{(\stackrel{x_1}{0}~,~\stackrel{y_1}{1})\qquad (\stackrel{x_2}{4}~,~\stackrel{y_2}{-1})} ~\hfill \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{-1}-\stackrel{y1}{1}}}{\underset{run} {\underset{x_2}{4}-\underset{x_1}{0}}} \implies \cfrac{-1 -1}{4 +0}\implies -\cfrac{1}{2}](https://tex.z-dn.net/?f=%5Cstackrel%7B%5Ctextit%7B%5CLARGE%20Line%20B%7D%7D%7B%28%5Cstackrel%7Bx_1%7D%7B0%7D~%2C~%5Cstackrel%7By_1%7D%7B1%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B4%7D~%2C~%5Cstackrel%7By_2%7D%7B-1%7D%29%7D%20~%5Chfill%20%5Cstackrel%7Bslope%7D%7Bm%7D%5Cimplies%20%5Ccfrac%7B%5Cstackrel%7Brise%7D%20%7B%5Cstackrel%7By_2%7D%7B-1%7D-%5Cstackrel%7By1%7D%7B1%7D%7D%7D%7B%5Cunderset%7Brun%7D%20%7B%5Cunderset%7Bx_2%7D%7B4%7D-%5Cunderset%7Bx_1%7D%7B0%7D%7D%7D%20%5Cimplies%20%5Ccfrac%7B-1%20-1%7D%7B4%20%2B0%7D%5Cimplies%20-%5Ccfrac%7B1%7D%7B2%7D)
keeping in mind that perpendicular lines have negative reciprocal slopes, and that parallel lines have equal slopes, well, those two slopes above aren't either, so since they're neither, and they're different, that means that lines A and B intersect.
its D and im very very sorry if im incorrect
It's sometimes true.
One example is the least common multiple of 2 and 3 is 6, which is their product.
But the product isn't always the answer because (example 2:) the least common multiple of 6 and 10 is 30 because 6*5=30 and 3*10=30, however 6*10 is 60.
Ergo, it is only sometimes true.
Answer:
d
Step-by-step explanation:
Soooo,
d = 2r
(29) = 2r
29/2 = 2r/2
14.5 = r
Answer:3.84x10^10
Step-by-step explanation:
32,000,000 teenagers
1200 text messages per month
32,000,000 * 1,200= 38,400,000,000----(scientific notation)-----> 3.84x10^10