1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andre45 [30]
3 years ago
10

What is the conecntration of Fe3 and the concentration of No3- present in the solution that result when 30.0 ml of 1.75M Fe(No3)

3 are mixed with 45.0 ml of 1.00M Hcl?
Chemistry
1 answer:
zvonat [6]3 years ago
7 0

Answer:

[Fe^{+3}]=0.700 M

[NO_{3}^{-}]=2.10 M

Explanation:

Here, a solution of Fe(NO₃)₃ is diluted, as the total volume of the solution has increased. The formula for dilution of the compound is mathematically expressed as:

C_{1}. V_{1}= C_{2}.V_{2}

Here, C and V are the concentration and volume respectively. The numbers at the subscript denote the initial and final values. The concentration of Fe(NO₃)₃ is 1.75 M. As ferric nitrate dissociates completely in water, the initial concentration of ferric is also 1.75 M.

Solving for [Fe],

[Fe^{+3}]=\frac{C_{1}.V_{1}}{V_{2} }

[Fe^{+3}]=\frac{(1.75).(30.0)}{45.0+30.0 }

[Fe^{+3}]=0.700 M

For [NO₃⁻],

There are three moles of nitrate is 1 mole of Fe(NO₃)₃. This means that the initial concentration of nitrate ions will be three times the concentration of ferric nitrate i.e., it will be 5.25 M.

[NO_{3}^{-}]=\frac{C_{1}.V_{1}}{V_{2} }

[NO_{3}^{-}]=\frac{(5.25)(30.0)}{30.0+45.0 }

[NO_{3}^{-}]=2.10 M

You might be interested in
A chemist must prepare of hydrochloric acid solution with a pH of at . He will do this in three steps: Fill a volumetric flask a
Eva8 [605]

Answer:

1.7 mL

Explanation:

<em>A chemist must prepare 550.0 mL of hydrochloric acid solution with a pH of 1.60 at 25 °C. He will do this in three steps: Fill a 550.0 mL volumetric flask about halfway with distilled water. Measure out a small volume of concentrated (8.0 M) stock hydrochloric acid solution and add it to the flask. Fill the flask to the mark with distilled water. Calculate the volume of concentrated hydrochloric acid that the chemist must measure out in the second step. Round your answer to 2 significant digits.</em>

Step 1: Calculate [H⁺] in the dilute solution

We will use the following expresion.

pH = -log [H⁺]

[H⁺] = antilog - pH = antilog -1.60 = 0.0251 M

Since HCl is a strong monoprotic acid, the concentration of HCl in the dilute solution is 0.0251 M.

Step 2: Calculate the volume of the concentrated HCl solution

We want to prepare 550.0 mL of a 0.0251 M HCl solution. We can calculate the volume of the 8.0 M solution using the dilution rule.

C₁ × V₁ = C₂ × V₂

V₁ = C₂ × V₂/C₁

V₁ = 0.0251 M × 550.0 mL/8.0 M = 1.7 mL

3 0
3 years ago
100.0 mL of Ca(OH)2 solution is titrated with 5.00 x 10–2 M HBr. It requires 36.5 mL of the acid solution for neutralization. Wh
miskamm [114]

Answer:

The number of moles HBr = 0.001825

The concentration of Ca(OH)2 = 0.009125 M

Explanation:

Step 1: Data given

Volume of the Ca(OH)2 = 100.0 mL = 0.100 L

Molarity of HBr = 5.00 * 10^-2 M

Volume of HBR = 36.5 mL = 0.0365 L

Step 2: The balanced equation

Ca(OH)2 + 2HBr → CaBr2 + 2H2O

Step 3: Calculate molarity of Ca(OH) 2

b*Va* Ca = a * Vb*Cb

⇒with b = the coefficient of HBr = 2

⇒with Va = the volume of Ca(OH)2 = 0.100 L

⇒with ca = the concentration of Ca(OH)2 = TO BE DETERMINED

⇒with a = the coefficient of Ca(OH)2 = 1

⇒with Vb = the volume of HBr = 0.0365 L

⇒with Cb = the concentration of HBr = 5.00 * 10^-2 = 0.05 M

2 * 0.100 * Ca = 1 * 0.0365 * 0.05

Ca = (0.0365*0.05) / 0.200

Ca = 0.009125 M

Step 4: Calculate moles HBr

Moles HBr = concentration HBr * volume HBr

Moles HBr = 0.05 M * 0.0365 L

Moles HBr = 0.001825 moles

3 0
3 years ago
Making solutions is an extremely important component to real-life chemistry. If you make 3.00 L of a solution using 90.0 g of so
kumpel [21]

Answer:

Final concentration of NaOH = 0.75 M

Explanation:

For NaOH :-

Given mass = 90.0 g

Molar mass of NaOH = 39.997 g/mol

The formula for the calculation of moles is shown below:

moles = \frac{Mass\ taken}{Molar\ mass}

Thus,

Moles= \frac{90.0\ g}{39.997\ g/mol}

Moles\ of\ NaOH= 2.2502\ mol

Molarity is defined as the number of moles present in one liter of the solution. It is basically the ratio of the moles of the solute to the liters of the solution.

The expression for the molarity, according to its definition is shown below as:

Molarity=\frac{Moles\ of\ solute}{Volume\ of\ the\ solution}

Where, Volume must be in Liter.

It is denoted by M.

Given, Volume = 3.00 L

So,

Molarity=\frac{2.2502\ mol}{3.00\ L}=0.75\ M

<u>Final concentration of NaOH = 0.75 M</u>

5 0
3 years ago
How many kilojoules of heat
Luba_88 [7]

Answer:Noble gases:

 are highly reactive.

 react only with other gases.

 do not appear in the periodic table.

 are not very reactive with other elements.

Explanation:Noble gases:

 are highly reactive.

 react only with other gases.

 do not appear in the periodic table.

 are not very reactive with other elements.

6 0
2 years ago
The concentration of a saturated BaCl2 solution is 1.75 M (mol/liter) and the concentration of a saturated Na2SO4 solution is 2.
Kitty [74]

Answer:

a) The theoretical yield is 408.45g of BaSO_{4}

b) Percent yield = \frac{realyield}{408.45g}*100

Explanation:

1. First determine the numer of moles of BaCl_{2} and Na_{2}SO_{4}.

Molarity is expressed as:

M=\frac{molessolute}{Lsolution}

- For the BaCl_{2}

M=\frac{1.75molesBaCl_{2}}{1Lsolution}

Therefore there are 1.75 moles of BaCl_{2}

- For the Na_{2}SO_{4}

M=\frac{2.0moles[tex]Na_{2}SO_{4}}{1Lsolution}[/tex]

Therefore there are 2.0 moles of Na_{2}SO_{4}

2. Write the balanced chemical equation for the synthesis of the barium white pigment, BaSO_{4}:

BaCl_{2}+Na_{2}SO_{4}=BaSO_{4}+2NaCl

3. Determine the limiting reagent.

To determine the limiting reagent divide the number of moles by the stoichiometric coefficient of each compound:

- For the BaCl_{2}:

\frac{1.75}{1}=1.75

- For the Na_{2}SO_{4}:

\frac{2.0}{1}=2.0

As the BaCl_{2} is the smalles quantity, this is the limiting reagent.

4. Calculate the mass in grams of the barium white pigment produced from the limiting reagent.

1.75molesBaCl_{2}*\frac{1molBaSO_{4}}{1molBaCl_{2}}*\frac{233.4gBaSO_{4}}{1molBaSO_{4}}=408.45gBaSO_{4}

5. The percent yield for your synthesis of the barium white pigment will be calculated using the following equation:

Percent yield = \frac{realyield}{theoreticalyield}*100

Percent yield = \frac{realyield}{408.45g}*100

The real yield is the quantity of barium white pigment you obtained in the laboratory.

7 0
3 years ago
Other questions:
  • A student is working with a 4.95 L sample of carbon dioxide at 22.8°C and 0.956 atm. The student compresses the gas to 1.75 L an
    11·1 answer
  • How does the kinetic-molecular theory explain the following properties of liquids:
    10·1 answer
  • What criteria must be met for a collision to result in particles changing?
    12·1 answer
  • Identify the following as an example of a physical property or a chemical property. A bar of lead is more easily bent (malleable
    13·2 answers
  • What is the molar solubility of magnesium carbonate ( MgCO3 ) in water? The solubility-product constant for MgCO3 is 3.5 × 10-8
    15·2 answers
  • What is the enthalpy of the overall chemical equation
    10·2 answers
  • Write the complete balanced equation for Manganese &amp; sulfuric acid --&gt; Manganese (II) sulfate &amp; water &amp; sulfur di
    6·1 answer
  • Electrons help create bonds between elements as they lie on the outside of an<br> atom.
    9·1 answer
  • What does chlorination do?
    5·1 answer
  • What is an orbital? This is the question.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!