Answer:
1 mole of C2H6.
Explanation:
The balanced equation for the reaction is given below:
2C2H6 + 7O2 —> 4CO2 + 6H2O
We can determine the number of mole of C2H6 that reacted to produce 2 moles of CO2 as follow:
From the balanced equation above,
2 moles of C2H6 reacted to produce 4 moles of CO2.
Therefore, Xmol of C2H6 will react to produce 2 moles of CO2 i.e
Xmol of CO2 = (2 x 2)/4
Xmol of CO2 = 1 mole.
Therefore, 1 mole of C2H6 is required to produce 2 moles of CO2.
Answer:
See explanations
Explanation:
a. Molarity = moles/Volume in Liters = 5moles/2Liters = 2.5M in NaCl
b. Freezing Pt Depression
1. Sprinkling salt on icy surfaces
2. Using antifreeze in automobile cooling systems
3. <em>Not an application
</em>
4. Using salt to make ice cream
c. pOH = -log[OHˉ] = -log(1x10ˉ¹⁰) = -(-10) = 10 => pH = 14 – pOH = 14 – 10 = 4
d. H₂O + NH₃ => NH₄⁺ + OHˉ => Bronsted Acid is H₂O (proton donor)
Explanation:
An object in motion <u>stays</u> <u>at</u> motion An object <u>at</u> <u>rest</u> stays at rest unless acted by an <u>external</u> force.
[ Newton's 1st law of motion ]
A is correct. water is incompressible, so it will always have the same density, regardless of volume
Answer:
Your hypothesis is an educated guess of what the end results of an experiment will be, using what you already know about your experiment you are going to conduct. So when you receive your final results, if your hypothesis is correct, or even somewhat correct then you know that it is supported by your results. For example, if I were to conduct the Coca-Cola and Mentos experiment, I could make a hypothesis that the Coca-Cola will have a bigger eruption when I add more than one Mento to the bottle due to a higher amount of a chemical with the addition of each mento. When I receive my results that the eruption was bigger each time, I know that my results supported my hypothesis.
Explanation:
-Hope this helped