The reaction between the reactants would be:
CH₃NH₂ + HCl ↔ CH₃NH₃⁺ + Cl⁻
Let the conjugate acid undergo hydrolysis. Then, apply the ICE approach.
CH₃NH₃⁺ + H₂O → H₃O⁺ + CH₃NH₂
I 0.11 0 0
C -x +x +x
E 0.11 - x x x
Ka = [H₃O⁺][CH₃NH₂]/[CH₃NH₃⁺]
Since the given information is Kb, let's find Ka in terms of Kb.
Ka = Kw/Kb, where Kw = 10⁻¹⁴
So,
Ka = 10⁻¹⁴/5×10⁻⁴ = 2×10⁻¹¹ = [H₃O⁺][CH₃NH₂]/[CH₃NH₃⁺]
2×10⁻¹¹ = [x][x]/[0.11-x]
Solving for x,
x = 1.483×10⁻⁶ = [H₃O⁺]
Since pH = -log[H₃O⁺],
pH = -log(1.483×10⁻⁶)
<em>pH = 5.83</em>
Answer:
Option A.
Explanation:
Option A directly tests the cause and effect. Option B simply argues it argumentatively without any solid evidence to show cause and effect. Option C only shows correlation and Option D only shows correlation as well.
Answer:
5*10²⁴ chlorine atoms are found in 8.3 moles of chlorine.
Explanation:
Avogadro's Number or Avogadro's Constant is called the number of particles that make up a substance (usually atoms or molecules) and that can be found in the amount of one mole of said substance. Its value is 6.023*10²³ particles per mole. Avogadro's number represents a quantity without an associated physical dimension, so it is considered a pure number that allows describing a physical characteristic without an explicit dimension or unit of expression. Avogadro's number applies to any substance.
Then you can apply the following rule of three: if 1 mole of the compound contains 6.023 * 10²³ atoms, 8.3 moles of the compound how many atoms does it have?

amount of atoms≅ 5*10²⁴ atoms
<u><em>5*10²⁴ chlorine atoms are found in 8.3 moles of chlorine.</em></u>
The answer is A, between 0 and 7.
In a pH scale from 0 to 14, we can groups these numbers into acidic, neutral, and alkaline. 7 is the neutral pH value, therefore, 0-7 is always acidic, and 7-14 is alkaline.
The smaller the number is, the more acidic the solution will be. This applies same in alkalis, the larger the pH value is, the more alkaline the solution is.
We can measure the pH of solution with many methods, the easiest way include using a pH paper, more advanced and accurate methods includes using a pH meter.
The answer is number 4 or the exchange of energy with the surroundings. Calorimetry is a measurement of energy that is formed or absorbed in a certain process. The calorimeter is the instrument used in order to measure the energy. It is recommended that a calorimeter should be a closed system so as to measure precisely the energy and avoid or lessen the exchange of energy with the surroundings. Thus, comparing an open ceramic mug and an insulated mug with a lid, the greatest difference is the energy lost to the surroundings.