Potholder should have high insulation and low conductivity, therefore the correct answer is the option B
<h3>What is insulation?</h3>
Insulation is a type of material used to create barriers to the transmission of the form of energy which either is in form of heat or electricity.
For outdoor trips in cold weather, several thin layers act as better insulating barriers for heat transfer.
The ability of an electric charge or heat to pass through a material is measured by its conductivity. A material is considered a conductor if it offers very little resistance to the flow of thermal or electric energy.
Thus, Potholders should be highly insulated and have low conductivity, therefore the correct answer is the option B
Learn more about insulation from here
brainly.com/question/14363642
#SPJ1
your question seems incomplete, the complete question is
To be effective, a pot holder should have low _____. viscosity conductivity malleability density
Answer:
white star
Explanation:
because it is the hottest form of a star
The horizontal force is m*v²/Lh, where m is the total mass. The vertical force is the total weight (233 + 840)N.
<span>Fx = [(233 + 840)/g]*v²/7.5 </span>
<span>v = 32.3*2*π*7.5/60 m/s = 25.37 m/s </span>
<span>The horizontal component of force from the cables is Th + Ti*sin40º and the vertical component of force from the cable is Ta*cos40º </span>
<span>Thh horizontal and vertical forces must balance each other. First the vertical components: </span>
<span>233 + 840 = Ti*cos40º </span>
<span>solve for Ti. (This is the answer to the part b) </span>
<span>Horizontally </span>
<span>[(233 + 840)/g]*v²/7.5 = Th + Ti*sin40º </span>
<span>Solve for Th </span>
<span>Th = [(233 + 840)/g]*v²/7.5 - Ti*sin40º </span>
<span>using v and Ti computed above.</span>
Answer:
d.100 meters
Explanation:
The diameter of the Milky Way Galaxy is approximately 100,000 light years.
Here we are using 1 millimiter (1 mm) to represent 1 light-year (1 ly). So, we can set the following proportion:

and by finding x, we find the diameter of the Milky Way Galaxy in the scale used:

so the correct answer is
d. 100 meters