The protons and electrons are held in place on the x axis.
The proton is at x = -d and the electron is at x = +d. They are released at the same time and the only force that affects movement is the electrostatic force that is applied on both subatomic particles. According to Newton's third law, the force Fpe exerted on protons by the electron is opposite in magnitude and direction to the force Fep exerted on the electron by the proton. That is, Fpe = - Fep. According to Newton's second law, this equation can be written as
Mp * ap = -Me * ae
where Mp and Me are the masses, and ap and ae are the accelerations of the proton and the electron, respectively. Since the mass of the electron is much smaller than the mass of the proton, in order for the equation above to hold, the acceleration of the electron at that moment must be considerably larger than the acceleration of the proton at that moment. Since electrons have much greater acceleration than protons, they achieve a faster rate than protons and therefore first reach the origin.
Answer: Radiation
Explanation: Radiation is the energy that comes from a source in form of electromagnetic waves, subatomic particles, light, or heat which travels through space.
Examples of radiation include the light, heat, and particles emitted from the Sun.
Using a foil barrier to prevent heat transfer is possible because foil has a silver color, and silver reflects light and heat instead of absorbing them. This is the opposite of black surfaces that absorb heat.
So in homes where these foil reflective barriers are used, the transfer of heat through Radiation is highly reduced.
I uploaded the answer to a file hosting. Here's link:
tinyurl.com/wpazsebu
Answer:
Yes
Explanation:
The spring force is given as:
F = kd
F is the spring force
K is the spring constant
d is the magnitude of the stretch
Since k is a constant, therefore, doubling the stretch distance will double the force.
Both stretch distance and force applied can be said to be directly proportional to one another.