Answer:
a) 
b) 
c) 
d) 
Explanation:
Average translation kinetic energy (
) is given as
....................(1)
where,
k = Boltzmann's constant ; 1.38 × 10⁻²³ J/K
T = Temperature in kelvin
a) at T = 27.8° C
or
T = 27.8 + 273 = 300.8 K
substituting the value of temperature in the equation (1)
we have

b) at T = 143° C
or
T = 143 + 273 = 416 K
substituting the value of temperature in the equation (1)
we have

c ) The translational kinetic energy per mole of an ideal gas is given as:

here
= Avagadro's number; ( 6.02×10²³ )
now at T = 27.8° C


d) now at T = 143° C


De broglie wavelength,
, where h is the Planck's constant, m is the mass and v is the velocity.

Mass of hydrogen atom, 
v = 440 m/s
Substituting
Wavelength 

So the de broglie wavelength (in picometers) of a hydrogen atom traveling at 440 m/s is 902 pm
Renewable resources are going to be important in our future because if we use up all of our NON-renewable resources now, then we’ll still have the renewable resources to depend on.
I hope this helped! :-)
Answer:
a) p=0, b) p=0, c) p= ∞
Explanation:
In quantum mechanics the moment operator is given by
p = - i h’ d φ / dx
h’= h / 2π
We apply this equation to the given wave functions
a) φ =
.d φ dx = i k
We replace
p = h’ k
i i = -1
The exponential is a sine and cosine function, so its measured value is zero, so the average moment is zero
p = 0
b) φ = cos kx
p = h’ k sen kx
The average sine function is zero,
p = 0
c) φ =
d φ / dx = -a 2x
.p = i a g ’2x
The average moment is
p = (p₂ + p₁) / 2
p = i a h ’(-∞ + ∞)
p = ∞
<span>velocity is defined as the rate of change of displacement irrespective of the length of the path travelled while speed is the average rate of covering distance. but in the liming case where the instantaneous velocity is given as v=dx/dt where dx is the small displacement in a small interval dt, both the speed and velocity have the same magnitude and the direction of velocity is the direction of the tangent to the corresponding displacement-time curve.</span>