Answer:
20 m/s/s
Explanation:
F=ma, 350=17.5 * a, a=20 m/s/s
Answer:
An atom with a closed shell of valence electrons (corresponding to an electron configuration s2p6) tends to be chemically inert. An atom with one or two valence electrons more than a closed shell is highly reactive, because the extra valence electrons are easily removed to form a positive ion.Explanation:
Answer:
4. B and D
Explanation:
Two points along a transverse wave (such as the one in the figure) are said to be in phase when:
- the vertical position of the two points is the same
- The oscillation of the wave is going in the same way for both points
Basically, we say that two points are in phase when they are separated by a complete cycle (one complete oscillation) of the wave.
For this wave, we see that point B and C have same displacement, but they are not in phase since in B the oscillation is going down while in C is going up.
Instead, B and D are in phase, because they are separated by one complete cycle: both points have same displacement and the oscillation is going in the same way for both of them.
Answer:
a. 2v₀/a b. 2v₀/a
Explanation:
a. Since you are moving with a constant velocity v₀, the distance, s you cover in time = t max is s = v₀t.
Since the dragster starts from rest with an acceleration, a, using
s' = ut + 1/2at² where u = 0 and s' = distance moved by dragster
s' = 0t + 1/2at²
s' = 1/2at²
Since the distance moved by me and the dragster must be the same,
s = s'
v₀t. = 1/2at²
v₀t. - 1/2at² = 0
t(v₀ - 1/2at) = 0
t= 0 or v₀ - 1/2at = 0
t= 0 or v₀ = 1/2at
t= 0 or t = 2v₀/a
So the maximum time tmax = 2v₀/a
b. Since the distance covered by me to meet the dragster is s = v₀t in time, t = tmax which is also my distance from the dragster when it started. So, my distance from the dragster when it started is s = v₀(2v₀/a)
= 2v₀/a