To solve this problem we must resort to the Work Theorem, internal energy and Heat transfer. Summarized in the first law of thermodynamics.

Where,
Q = Heat
U = Internal Energy
By reference system and nomenclature we know that the work done ON the system is taken negative and the heat extracted is also considered negative, therefore
Work is done ON the system
Heat is extracted FROM the system
Therefore the value of the Work done on the system is -158.0J
Answer:
1200 Sm^2mol^-1
Explanation:
Given data :
conductivity of water ( kwater ) = 76 mS m^-1 = 0.076 Sm^-1
conductivity of kcl (aq)( Kkcl ) = 1.1639 Sm^-1
Kkcl = 1.1639 - 0.076 = 1.0879 Sm^-1
Resistance = 33.21 Ω
where conductivity can be expressed as = 
hence cell constant = conductivity * Resistance
= 1.0879 * 33.21 = 36.13m^-1
conductivity of CH3COOH ( kCH3COOH ) = 36.13 / 300
= 0.120 Sm^-1
<u>Determine the molar conductivity of acetic acid</u>
= ( kCH3COOH * 1000 ) / C
C = 0.1 mol dm
= (0.120 * 1000) / 0.1 = 1200 Sm^2mol^-1
Answer: I think, the number of oscillations in a given period of time.
Explanation: Well I guess because in a period time is known as the rate of occurrence of the wave. Hope this helps!
A negative object so it takes in the charged object and nothing will happen until something else would touch it I think
Answer:
If the mass of B is m and the temperature change is the same, the mass of B will be 2m.
Explanation:
Q = mcT
T = mc/Q
M = 4Q/2cT........... (1)
T = Q/mc
Plug this in equation 1.
M = 4Q/(2c × Q/mc) = 4Q ÷ 2Q/m = 4Q × m/2Q = 2m