Answer:
The question asks for moles, which can be obtained from P-V-T data using the ideal gas
equation: n =
RT
PV .
Now use the rearranged gas law to determine the number of moles in the sample:
!
n = PV
RT = (6.47 x 105 Pa)(5.65 x 10-4m3
)
(8.314 J
mol K )(21.7 + 273.15 K) = 0.149 mol.
All conditions except the pressure and volume are fixed, so P1V1 = P2V2 can be used: 3.62 L
101kPa
(647 kPa)(0.565 L)
2
1 1
2 = =
P
PV V
Explanation:
The dispersed particles of a colloid exhibit brownian motion, in which they move in a chaotic manner without a discernible pattern. The brownian motion is the erratic random motion of particles that are suspended in a fluid which results to the collision of molecules moving fast in the fluid they are in.
Explanation:
nah biaar seneng, tuh ku jawab:c
Answer:
B
Explanation:
962,320 J
230 nutritional Calories in Joules is 962,320 J
Answer:
d and e
Explanation:
We have 5 solutions with different molar concentrations, that is, the quotient between the number of moles of solute and the liters of solution. This can be expressed as mol/L or M. The most dilute would be the one having the less number of moles of solute per liters of solution, that is, solution d or e, which have the same concentration. If we order them from the most diluted to the most concentrated, we get:
d = e < a < b < c