Answer:
Speed of the wreckage = 49.29 km/hr
Explanation:
This question is solved simply by using the conservation of momentum law.
The momentum of the three moving bodies are calculated below:
Momentum of Car 1 : 1100 * 55 = 60500 kg.km/hr
Momentum of Truck : 480 * 37 = 17760 kg.km/hr
Momentum of Car 2 : 1300 * 49 = 63700 kg.km/hr
Total mass of all three vehicles: 1100 + 480 + 1300 = 2880 kg
The final momentum equals the initial momentum if it is conserved. Thus we have the following equation:
Final Momentum = Initial Momentum
Final Velocity * Total mass = Momentum of all three vehicles combined
Final Velocity * 2880 = 60500 + 17760 + 63700
Final Velocity = 49.29 km/hr
Answer:
It is easy to imagine representing a narrow beam of light by a collection of parallel arrows—a bundle of rays. As the beam of light moves from one medium to another, reflects off surfaces, disperses, or comes to a focus, the bundle of rays traces the beam's progress in a simple geometrical manner.
I hope it's helpful!
Answer:
An ordinary thermometer is commonly referred to as a dry-bulb thermometer. Most people use this thermometer to measure other types of temperature, such as humidity levels or the outside temperature. This thermometer can show higher temperatures because it is built to withstand different temperature ranges.
Explanation:
Answer:
A negatively charged particle -q is placed at the center of a uniformly charged ring, where the ring has a total positive charge Q as shown in the following figure. The particle, confined to move along the x axis, is moved a small distance x along the axis ( where x << a) and released. Show that the particle oscillates in simple harmonic motion with a frequency given by,
Black holes is exists
Black holes is highly gravitional wave field in space