Mass does not affect the pendulum's swing. The longer the length of string, the farther the pendulum falls; and therefore, the longer the period, or back and forth swing of the pendulum. The greater the amplitude, or angle, the farther the pendulum falls; and therefore, the longer the period.
weight is vector vary from place to place
Given that the function of the wave is f(x) = cos(π•t/2), we have;
a. The graph of the function is attached
b. 4 units of time
c. Even
d. 4.935 J/kg
e. 1.234 W/kg
<h3>How can the factors of the wave be found?</h3>
a. Please find attached the graph of the signal created with GeoGebra
b. The period of the signal, T = 2•π/(π/2) = <u>4</u>
c. The signal is <u>even</u>, given that it is symmetrical about the y-axis
d. The energy of the signal is given by the formula;

Which gives;
E = 0.5 × 1.571² × 1² × 4 = <u>4.935 J/kg</u>
e. The power of the wave is given by the formula;
E = 0.5 × 1.571² × 1² × 4 × 0.25 = <u>1.234 W/</u><u>kg</u>
Learn more about waves here:
brainly.com/question/14015797
Answer: you subtract the number of protons from the mass number, on the periodic table your atomic number is your protons and your atomic mass is the mass number
Explanation:
Answer:
A) wood, water, neon gas
Explanation:
Matter, which constitutes every known substances is said to exists in three states namely: gaseous, solid and liquid. Each state of matter contain particles that make up their structure.
- Solids have well arranged particles that are tightly packed together to give it its solid shape. Example is wood
- Liquids have particles that are loosely packed together, hence, can still move about. Example is water
- Gases have particles that are not packed together, hence, their ability to roam freely. Example is neon gas
Based on this, the order of MOST to LEAST ordered particle arrangement is solid - liquid- gas i.e. wood - water - neon gas.