Answer:
The axial region of the body consists of the bones of the head, trunk of a vertebrate, skull, vertebral column, and thoracic cage. The human skeleton consists of 80 bones.
Explanation:
The axial region of the body consists of the bones of the head, trunk of a vertebrate, skull, vertebral column, and thoracic cage. The human skeleton consists of 80 bones.
It is composed of the following six parts:
1. Skull (22 bones)
2. Ossicles of the middle ear
3. Hyoid bone
4. Rib cage
5. Sternum
6. Vertebral column
The axial region of the body forms the vertical axis of the body as the axial skeleton supports the head, neck, back, and chest.
Principles<span> of </span>arc welding<span>. </span>Arc welding<span> is a </span>welding<span> process, in which heat is generated by an </span>electric arc<span> struck between an electrode and the work piece. </span>Electric arc<span> is luminous</span>electrical<span> discharge between two electrodes through ionized gas.</span>
Explanation:
Solution:
Let the time be
t1=35min = 0.58min
t2=10min=0.166min
t3=45min= 0.75min
t4=35min= 0.58min
let the velocities be
v1=100km/h
v2=55km/h
v3=35km/h
a. Determine the average speed for the trip. km/h
first we have to solve for the distance
S=s1+s2+s3
S= v1t1+v2t2+v3t3
S= 100*0.58+55*0.166+35*0.75
S=58+9.13+26.25
S=93.38km
V=S/t1+t2+t3+t4
V=93.38/0.58+0.166+0.75+0.58
V=93.38/2.076
V=44.98km/h
b. the distance is 93.38km
To solve the problem it is necessary to apply conservation of the moment and conservation of energy.
By conservation of the moment we know that

Where
M=Heavier mass
V = Velocity of heavier mass
m = lighter mass
v = velocity of lighter mass
That equation in function of the velocity of heavier mass is

Also we have that 
On the other hand we have from law of conservation of energy that

Where,
W_f = Work made by friction
KE = Kinetic Force
Applying this equation in heavier object.






Here we can apply the law of conservation of energy for light mass, then

Replacing the value of 

Deleting constants,


Answer:
The velocity of Mosquito with respect to earth will be 0.302m/s
Explanation:
V(ma) = 1.10 m/s, east Velocity of mosquito with respect to air
V(ae) = 1.4 m/s at 35° Velocity of air with respect to Earth in west of south direction.
Velocity of Mosquito with respect to earth will be
V(me) = V(ma) + V(ae)
We need to find the mosquito’s speed with respect to Earth in the x direction.
V(x, me) = V(x, ma) + V(x, ae) = V(ma) + V(ae)(cos theta(ae) )
Angle (ae) = –90.0° − 35°=−125°
V(x, me) = 1.10 + (1.4)Cos(-125)
= 1.10 + 1.4(-0.57)
= 1.10 -0.798
= 0.302
So the velocity of Mosquito with respect to earth will be 0.302m/s