It’s because flourecent lights operate at higher temperatures than incadecent lights.
Answer:
0.5 m/s².
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 0 m/s
Final velocity (v) = 10 m/s
Time (t) = 20 s
Acceleration (a) =?
Acceleration can simply be defined as the rate of change of velocity with time. Mathematically, it is expressed as:
a = (v – u) / t
Where:
a is the acceleration.
v is the final velocity.
u is the initial velocity.
t is the time.
With the above formula, we can obtain the acceleration of the car as follow:
Initial velocity (u) = 0 m/s
Final velocity (v) = 10 m/s
Time (t) = 20 s
Acceleration (a) =?
a = (v – u) / t
a = (10 – 0) / 20
a = 10/20
a = 0.5 m/s²
Therefore, the acceleration of the car is 0.5 m/s².
Answer:
The answer is D.
Explanation:
Average speed involve just distance and time but average velocity includes displacement and time.
(Correct me if I am wrong)
<span>Cobalt-60 is undergoing a radioactivity decay.
The formula of the decay is n=N(1/2)</span>∧(T/t).
<span>Where N </span>⇒ original mass of cobalt
<span> n </span>⇒ remaining mass of cobalt after 3 years
T ⇒ decaying period
t ⇒ half-life of cobalt.
So,
0.675 = 1 × 0.5∧(3/t)
log 0.675 = log 0.5∧(3/t)
3/t = log 0.675 ÷log 0.5
3/t= 0.567
t = 3÷0.567
= 5.290626524
the half-life of Cobalt-60 is 5.29 years.
<span>
</span><span>
</span>
Number 2- Liquids
Number 3- Cells