ALL sound waves are longitudinal, I know this of of many ways, I study astronomy and the sound waves of blackholes as they form. award me brainliest and I award you with a correct answer :)
A) Since the plot 1/[AB] vs time gives straight line, the order of the reaction with respect to A is second order:
rate constant, K = slope = 5.5 x 10⁻² M⁻¹S⁻¹
b) Rate law : Rate = k[AB]²
c) half life period of the 2nd order is inversely proportional to the initial concentration of the reactants
t 1/2 =

.

t 1/2 =

d) k = 5.5 x 10⁻² M⁻¹s⁻¹
Initial concentration of AB, [A₀] = 0.250 M
concentration of AB after 75 s = [A]
k =
![\frac{1}{t} [ \frac{1}{[A]} - \frac{1}{[Ao]} ]](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7Bt%7D%20%5B%20%5Cfrac%7B1%7D%7B%5BA%5D%7D%20-%20%20%5Cfrac%7B1%7D%7B%5BAo%5D%7D%20%5D)
[A] = 0.123 M
Equation: AB → A + B
concentration of AB after 75 s = 0.123 M
Amount of AB dissociated = 0.25 - 0.123 = 0.127 M
concentration of [A] produced = concentration of [B] produced = Amount of AB reacted = 0.127 M
Answer: The boiling point of kerosene ranges from around 150 to 300 degrees Celsius normally being closer to 300 degrees Celsius.
Explanation:
- Increase in melting point;
- Trans- arrangements of side chains around double bonds that remains in the hydrogenated fat.
Explanation:
Vegetable oil contain a larger ratio of double bonds among all its carbon-carbon bonds than animal fat such as butter does. Unlike carbon-carbon single bonds, structures connected to carbon-carbon double bonds are unable to rotate around the bonding axis. As a result, molecules rich in double bonds aren't as malleable or stack as tightly as those with a smaller number of double bonds do. The spacy molecular configuration hinders the formation of intermolecular forces, such that in nature in comparison with animal fats, vegetable <em>oils</em> tend to demonstrate lower melting points.
Hydrogenating vegetable oils reduce the number of double bonds per molecule while attaching extra hydrogen atoms to carbon atoms that used to form double bonds. This process would increase the strength of intermolecular interaction, hence raising the melting point.
The hydrogenation process does not necessary convert <em>all</em> double bonds to single bonds; some double bonds remains in the molecule, preventing the rotation of structures on their sides. Double bonds in naturally-occuring fatty acids tend to be of the cis- configuration, with hydrogen atoms connected to the same side of the carbon-carbon double bond. The high temperature involved in the hydrogenation process (around 90 degrees Celsius) can trigger the flipping of atoms connected to these double bonds to produce trans- fatty acids with hydrogen atoms bonded to opposite sides of the double bond.