I don't think that 4m has anything to do with the problem.
anyway. here.
A___________________B_______C
where A is the point that the train was released.
B is where the wheel started to stick
C is where it stopped
From A to B, v=2.5m/s, it takes 2s to go A to B so t=2
AB= v*t = 2.5 * 2 = 5m
The train comes to a stop 7.7 m from the point at which it was released so AC=7.7m
then BC= AC-AB = 7.7-5 = 2.7m
now consider BC
v^2=u^2+2as
where u is initial speed, in this case is 2.5m/s
v is final speed, train stop at C so final speed=0, so v=0
a is acceleration
s is displacement, which is BC=2.7m
substitute all the number into equation, we have
0^2 = 2.5^2 + 2*a*2.7
0 = 6.25 + 5.4a
a = -6.25/5.4 = -1.157
so acceleration is -1.157m/(s^2)
Answer:

Explanation:
From the question we are told that:
Height 
Time 
Generally the Newton's equation for Initial velocity upward is mathematically given by



Generally the velocity at elevation and depression occurs as ball arrives and passes through S=28


Generally the Newton's equation for time to reach initial velocity is mathematically given by




Answer:
The answer is B.
Explanation:
Given that the <em>current </em>(Ampere) in a series circuit is same so we can ignore it. We can assume that the total voltage is 60V and all the 3 resistance are different, 20Ω, 40Ω and 60Ω. So first, we have to find the total resistance by adding :
Total resistance = 20Ω + 40Ω + 60Ω
= 120Ω
Next, we have to find out that 1Ω is equal to how many voltage by dividing :
120Ω = 60V
1Ω = 60V ÷ 120
1Ω = 0.5V
Lastly, we have to calculate the voltage at R1 so we have to multiply by 20 (R1) :
1Ω = 0.5V
20Ω = 0.5V × 20
20Ω = 10V
Answer:
<em>The comoving distance and the proper distance scale</em>
<em></em>
Explanation:
The comoving distance scale removes the effects of the expansion of the universe, which leaves us with a distance that does not change in time due to the expansion of space (since space is constantly expanding). The comoving distance and proper distance are defined to be equal at the present time; therefore, the ratio of proper distance to comoving distance now is 1. The scale factor is sometimes not equal to 1. The distance between masses in the universe may change due to other, local factors like the motion of a galaxy within a cluster. Finally, we note that the expansion of the Universe results in the proper distance changing, but the comoving distance is unchanged by an expanding universe.