This question is incomplete because the options are missing; here is the complete question:
A runner starts at point A, runs around a 1-mile track, and finishes the run back at point A. Which of the following statements is true?
A. The runner's displacement is 1 mile.
B. The runner's displacement is zero.
C. The distance the runner covered is zero.
D. The runner's speed was zero.
The answer to this question is B. The runner's displacement is zero
Explanation:
Displacement always implies a change of position; this means an object or individual moves from point A to point B, and therefore the original position is different from the final position. Additionally, in displacement, other related factors such as the total distance the body moved and the direction of movement. In the case presented, it can be concluded there was no displacement or the displacement is zero because even when the runner moved and ran two miles, he returned to the initial position, and without a change in the position, there is no displacement.
Answer: E = 
Explanation: The formulae for intensity of an electric field of a solid metal sphere relative to a point is given below
r
where
,
, r = 0.1m r = is the position vector of the charge.
it has been stated in the question that the charge is placed at the center thus it has no position vector.

Answer: Sirius, the brightest star in the sky, is 2.6 parsecs (8.6 light-years) from Earth, giving it a parallax of 0.379 arcseconds. Another bright star, Regulus, has a parallax of 0.042 arcseconds. Then, the distance in parsecs will be,23.46.
Explanation: To find the answer, we have to know more about the relation between the distance in parsecs and the parallax.
<h3>What is the relation between the distance in parsecs and the parallax?</h3>
- Let's consider a star in the sky, is d parsec distance from the earth, and which has some parallax of P amount.
- Then, the equation connecting parallax and the distance in parsec can be written as,


<h3>How to solve the problem?</h3>

- Thus, we can find the distance in parsecs as,

Thus, we can conclude that, the distance in parsecs will be, 23.46.
Learn more about the relation connecting distance in parsecs and the parallax here: brainly.com/question/28044776
#SPJ4
Even though the object is weightless, it would need inertia, I.e, you pushing it or any form of transportation. So you would still have to push that 500kg to just keep it moving in space. Say if it were a planet with less gravitational force, it would be weightless.
No chande in mass becouse of the change in gravitational force do not effect in mass