m = mass of the person = 82 kg
g = acceleration due to gravity acting on the person = 9.8 m/s²
F = normal force by the surface on the person
f = kinetic frictional force acting on the person by the surface
μ = Coefficient of kinetic friction = 0.45
The normal force by the surface in upward direction balances the weight of the person in down direction , hence
F = mg eq-1
kinetic frictional force on the person acting is given as
f = μ F
using eq-1
f = μ mg
inserting the values
f = (0.45) (82) (9.8)
f = 361.6 N
That's <em>false</em>. It's just the opposite. As you become more fit, your heart becomes able to accomplish more with each beat, so your resting heart rate DEcreases.
Answer:
d. Can be replaced at the same rate or faster than they are used
Explanation:
I just took the test, and its the right answer. Your welcome ✌
Explanation:
PE = mgz = 200 * 9.81 *1000 = 1962 KJ
<span>A baseball speeds up as it falls through the air.
Yes. Forces on the balloon are unbalanced.
The balloon is speeding up, so we know that the downward force
of gravity is stronger than the upward force of air resistance.
A soccer ball is at rest on the ground.
No. The ball is not accelerating, so we know that the forces on it
are balanced.
The downward force of gravity on the ball and the upward force
of the ground are equal.
An ice skater glides in a straight line at a constant speed.
No. The skater's speed and direction are not changing, so he is not
accelerating. That tells us that the forces on him are balanced.
A bumper car hit by another car moves off at an angle.
Yes. The direction in which the car was moving changed.
That's acceleration, so we know that the forces on it are unbalanced,
at least at the moment of impact.
A balloon flies across the room when the air is released.
Yes. The balloon was not moving. But when the little nozzle was
opened, it started to zip around the room. So its speed changed.
And, as it goes bloozing around the room, its direction keeps changing too.
There's a whole lot of acceleration going on, so we know the forces on it
are unbalanced.</span>