D) + ΔH and +ΔE
Given this is one of the answer choices
Answer:
Q = 2640.96 J
Explanation:
Given data:
Mass of He gas = 10.7 g
Initial temperature = 22.1°C
Final temperature = 39.4°C
Heat absorbed = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree. Specific heat capacity of He is 14.267 J/g.°C
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 39.4°C - 22.1°C
ΔT = 17.3°C
Q = 10.7 g× 14.267 J/g.°C × 17.3°C
Q = 2640.96 J
Answer:
in a chemical reaction of NaOH with H2O, after NaOH is completely disassociated, we will find Na+ and OH- ions in the solution. (option C).
Explanation:
In a reaction where NaOH is added to H2O.
NaOH is considered a strong base, this means that in an aqueous solution ( in water) it's able to completely disassociate in ions.
There will not remain any NaOH in the solution. This means option D is not correct.
The ions in which NaOH will disassociate are : NaOH → Na+ + OH-
These ions we will find in the solution.
Not only Na+ because NaOH is a strong base, so there will be a lot of OH- ions as well in solution.
This means in a chemical reaction of NaOH with H2O, after NaOH is completely disassociated, we will find Na+ and OH- ions in the solution.
Answer: Pentane C5H12
Explanation:
The boiling point of a substance is simply defined as the temperature whereby a liquid's vapor pressure is equal to the pressure that is surrounding the liquid and hence, the liquid will changes into vapor.
The likely molecular formula for this compound is Pentane i.e C5H12 due to the fact that its boiling point is between Butane with formula C4H10 and Hexane with formula C6H14 boiling points.