<u>Answer:</u> The edge length of the unit cell is 0.461 nm
<u>Explanation:</u>
We are given:
Atomic radius of iridium = 0.163 nm
To calculate the edge length, we use the relation between the radius and edge length for FCC lattice:

Putting values in above equation, we get:

Hence, the edge length of the unit cell is 0.461 nm
The highest electronegativity is in the elements in the top left corner of the periodic table, and the lowest in the bottom right corner. Therefore, traveling up or to the left across the periodic table will increase the electronegativity
Answer: so the answer is A
Explanation: The relationship between an object's mass (m), its acceleration (a), and the applied force (f) is F=ma. ... This law requires that the direction of the acceleration vector is in the same direction as the force vectors.
Answer:
5=C, every action has an equal or opposite reaction,
6=B, since it has less air drag and more force exerted on it
7= You're correct