<h3>
Answer:</h3>
0.387 J/g°C
<h3>
Explanation:</h3>
- To calculate the amount of heat absorbed or released by a substance we need to know its mass, change in temperature and its specific heat capacity.
- Then to get quantity of heat absorbed or lost we multiply mass by specific heat capacity and change in temperature.
- That is, Q = mcΔT
in our question we are given;
Mass of copper, m as 95.4 g
Initial temperature = 25 °C
Final temperature = 48 °C
Thus, change in temperature, ΔT = 23°C
Quantity of heat absorbed, Q as 849 J
We are required to calculate the specific heat capacity of copper
Rearranging the formula we get
c = Q ÷ mΔT
Therefore,
Specific heat capacity, c = 849 J ÷ (95.4 g × 23°C)
= 0.3869 J/g°C
= 0.387 J/g°C
Therefore, the specific heat capacity of copper is 0.387 J/g°C
Answer:
28
Explanation:
it states that the atom is neutral, meaning the number of electrons and protons are the same. so if there are 13 electrons, there are 13 protons. And the mass number is neutrons plus protons. So 13+15 is 28
Radiation is the heat that travels directly to the earth
Phosphorus - P - Protons = 15, Electrons = 15, Neutrons = 16 - Non-Metal
Lithium - Li - Protons = 3, Electrons = 3, Neutrons = 4 - Metal
Nitrogen - N - Protons = 7, Electrons = 7, Neutrons = 7 - Non-Metal
Copper - Cu - Protons = 29, Electrons = 29, Neutrons = 34 - Metal
Neon - Ne - Protons = 10, Electrons = 10, Neutrons = 10 - Non-Metal
sorry i don’t know about the other questions but i thought i could help with the table!
Additional Info:
number of protons = atomic number
number of electrons = atomic number
number of neutrons = mass number - atomic number