To develop this problem we will apply the Archimedes model. As well as the definitions of Weight based on mass and acceleration. The first in turn will be considered under the relationship of Density and Volume. From the values given we have to:


Since it is in equilibrium, the weight of the object will have a reaction from the water, which will cause the sum of forces between the two objects to be zero, therefore





The value of gravity is canceled because it is a constant



The portion of the object that is submerged corresponds to 82%, while the portion that is visible, above the water level will be 18%
Answer:
4.0
Explanation:
The following data were obtained from the question:
Force (F) = 20 N
Mass (m) = 5 kg
Acceleration (a) =.?
Force is simply defined as the product of mass and acceleration. Mathematically, it is expressed as
Force (F) = mass (m) x acceleration (a)
F = ma
With the above formula, we can obtain th acceleration of the body as follow:
Force (F) = 20 N
Mass (m) = 5 kg
Acceleration (a) =.?
F = ma
20 = 5 x a
Divide both side by 5
a = 20/5
a = 4 m/s²
Therefore, the value that will complete the last cell in the question above is 4.
Answer:
A uniform ladder of mass and length leans at an angle against a frictionless wall .If the coefficient of static friction between the ladder and the ground is , determine a formula for the minimum angle at which the ladder will not slip.
Explanation:A uniform ladder of mass and length leans at an angle against a frictionless wall .If the coefficient of static friction between the ladder and the ground is , determine a formula for the minimum angle at which the ladder will not slip.
Answer:
2.The density of air increases and thendecreases as the sound wave passes.
Explanation:
Sound waves are mechanical waves, which consist of oscillation of the particles in the medium where the wave is transmitted through.
Sound waves are also longitudinal waves, which means that the direction of oscillations of the particles of the medium occurs in a direction parallel to the direction of motion of the wave (so, essentially back and forth).
Due to the nature of longitudinal waves, they create alternating regions of the medium where the density of particles are higher and lower. The former are called compressions, while the latter are called rarefactions.
Therefore, when a sound wave travels through the air, the density of one region of air continuously changes: compression first (high density), rarefaction then (lower density), then compression again, etc..