Hello!
The statement that <span>describes the solar feature shooting off into space labeled C is An envelope of plasma surrounding the Sun.
This is called the Solar Corona. It is the outmost layer of the Sun's atmosphere. The Corona is hotter than the visible surface of the Sun. (1 000 000 - 3 000 000 K). It is composed of Plasma (The fourth state of the matter, similar to the gaseous state, but with electrically charged particles). All structural details of the Solar Corona are derived from the Magnetic Field of the Sun.
Have a nice day!</span>
So you would divide 1530 by 8 and that’s how you’d get your answer, so it should be (blank)m
The temperature of 20°C is equal to 68.0<span>°F</span>
If your machine has a mechanical advantage of 2.5, then WHATEVER force you apply to the input, the force at the output will be 2.5 times as great.
If you apply 1 newton to the machine's input, the output force is
(2.5 x 1 newton) = 2.5 newtons.
If you apply 120 newtons to the machine's input, the output force is
(2.5 x 120 newtons) = 300 newtons.
Answer:
(a) m = 33.3 kg
(b) d = 150 m
(c) vf = 30 m/s
Explanation:
Newton's second law to the block:
∑F = m*a Formula (1)
∑F : algebraic sum of the forces in Newton (N)
m : mass s (kg)
a : acceleration (m/s²)
Data
F= 100 N
a= 3.0 m/s²
(a) Calculating of the mass of the block:
We replace dta in the formula (1)
F = m*a
100 = m*3
m = 100 / 3
m = 33.3 kg
Kinematic analysis
Because the block moves with uniformly accelerated movement we apply the following formulas:
d= v₀t+ (1/2)*a*t² Formula (2)
vf= v₀+a*t Formula (3)
Where:
d:displacement in meters (m)
t : time interval in seconds (s)
v₀: initial speed in m/s
vf: final speed in m/s
a: acceleration in m/s²
Data
a= 3.0 m/s²
v₀= 0
t = 10 s
(b) Distance the block will travel if the force is applied for 10 s
We replace dta in the formula (2):
d= v₀t+ (1/2)*a*t²
d = 0+ (1/2)*(3)*(10)²
d =150 m
(c) Calculate the speed of the block after the force has been applied for 10 s
We replace dta in the formula (3):
vf= v₀+a*t
vf= 0+(3*(10)
vf= 30 m/s