1 kg ball can have more kinetic energy than a 100 kg ball as increase in velocity is having greater impact on K.E than increase in mass.
<u>Explanation</u>:
We know kinetic energy can be judged or calculated by two parameters only which is mass and velocity. As kinetic energy is directly proportional to the
and increase in velocity leads to greater effect on translational Kinetic Energy. Here formula of Kinetic Energy suggests that doubling the mass will double its K.E but doubling velocity will quadruple its velocity:

Better understood from numerical example as given:
If a man A having weight 50 kg run with speed 5 m/s and another man B having 100 kg weight run with 2.5 m / s. Which man will have more K.E?
This can be solved as follows:


It shows that man A will have more K.E.
Hence 1 kg ball can have more K.E than 100 kg ball by doubling velocity.
Answer:
La velocidad de la luz en el vacío es una constante universal con el valor de 299 792 458 m/s (186 282,397 mi/s),aunque suele aproximarse a 3·108 m/s. Se simboliza con la letra c, proveniente del latín celéritās (en español, celeridad o rapidez).
¿Cuál es la consecuencia que a velocidad de la luz sea constante?
Respuesta. En modificaciones del vacío más sutiles, como espacios curvos, efecto Casimir, poblaciones térmicas o presencia de campos externos, la velocidad de la luz depende de la densidad de energía de ese vacío.
Energy is calculated as power*time, so give the wattage of 1200 W (equivalent to 1200 Joules/second) and time of 30 seconds, multiplying these gives 36000 J or 36 kJ of electrical energy.
If electrical charge or current is needed: Power = voltage * current, so given the power of 1200 watts and voltage of 120 V, current is 1200 W / 120 V = 10 Amperes. Charge is calculated by multiplying 10 A*30 s = 300 C.