Answer:
Explanation:
it take oxygen in the atmosphere to burn it... in space there isn't any air :0
To solve this problem we will apply the concepts related to the Doppler effect. The Doppler effect is the change in the perceived frequency of any wave movement when the emitter, or focus of waves, and the receiver, or observer, move relative to each other. Mathematically it can be described as,

Here,
= Frequency of Source
= Speed of sound
f = Frequency heard before slowing down
f' = Frequency heard after slowing down
v = Speed of the train before slowing down
So if the speed of the train after slowing down will be v/2, we can do a system equation of 2x2 at the two moments, then,
The first equation is,



Now the second expression will be,



Dividing the two expression we have,

Solving for v, we have,

Therefore the speed of the train before and after slowing down is 22.12m/s
To develop this problem it is necessary to apply the concepts related to Wavelength, The relationship between speed, voltage and linear density as well as frequency. By definition the speed as a function of the tension and the linear density is given by

Where,
T = Tension
Linear density
Our data are given by
Tension , T = 70 N
Linear density , 
Amplitude , A = 7 cm = 0.07 m
Period , t = 0.35 s
Replacing our values,



Speed can also be expressed as

Re-arrange to find \lambda

Where,
f = Frequency,
Which is also described in function of the Period as,



Therefore replacing to find 


Therefore the wavelength of the waves created in the string is 3.49m
Passive transport occurs thanks to diffusion, diffusion is the reason passive transport is able to travel throughout the cell membrane.