' D ' is the only correct statement on the list.
Electromagnetic waves are capable of traveling through
many substances, and they're also capable of traveling
through vacuum. Mechanical waves can't travel in vacuum.
Answer:
Latent heat, along with birds, ride those rising columns of air. This brings up a third and the ultimate mechanism by which the Earth's heat escapes into space, which is electromagnetic radiation. Every object, including the Earth's surface, absorbs and radiates heat electromagnetically
Explanation:
I LITERALLY JUST COPIED AND PASTED THIS FROM GOOGLE..i dont understand anything from it since im not on this topic but hope this help a little....i got it from google ..not my own work
Answer:
The average speed of the blood in the capillaries is 0.047 cm/s.
Explanation:
Given;
radius of the aorta, r₁ = 1 cm
speed of blood, v₁ = 30 cm/s
Area of the aorta, A₁ = πr₁² = π(1)² = 3.142 cm²
Area of the capillaries, A₂ = 2000 cm²
let the average speed of the blood in the capillaries = v₂
Apply continuity equation to determine the average speed of the blood in the capillaries.
A₁v₁ = A₂v₂
v₂ = (A₁v₁) / (A₂)
v₂ = (3.142 x 30) / (2000)
v₂ = 0.047 cm/s
Therefore, the average speed of the blood in the capillaries is 0.047 cm/s.
dimension = 30.0 m ✕ 15.0 m ✕ 5.0 m.
density = 1.20 kg/m3
(a)volume = lenght * breadth * height
= 30 * 15 * 5
= 2250 metre cube = 2.25 cubic meter
(b) mass of air = density * volume
mass of air = 1.2 * 2250
mass of air = 2700kg
weight = mass * 9.8
= 2700 * 9.8
= 26,460 N
- The definition of Density is the amount of matter in a given space, or volume
- Density = mass/volume
- units for density kg/m^3
- Density of water 1g/ml
- Salt water is denser that is why don't sink as easily.
To know more about density visit : brainly.com/question/15164682
#SPJ4
Sound waves travel faster through <em>solids</em> than they do through gases or liquids. <em>(C) </em>They don't travel through vacuum at all.
Example:
Speed of sound in normal air . . . around 340 m/s
Speed of sound in water . . . around 1,480 m/s
Speed of sound in iron . . . around 5,120 m/s