1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Allushta [10]
4 years ago
15

A woman can row a boat at 5.60 km/h in still water. (a) If she is crossing a river where the current is 2.80 km/h, in what direc

tion must her boat be headed if she wants to reach a point directly opposite her starting point? Express your answer as an angle with respect to the line perpendicular to the river, positive if down the river. (b) If the river is 5.60 km wide, how long will she take to cross the river? (c) Suppose that instead of crossing the river she rows 2.80 km down the river and then back to her starting point. How long will she take? (d) How long will she take to row 2.80 km up the river and then back to her starting point? (e) In what direction should she head the boat if she wants to cross in the shortest possible time, and (f) what is that time?

Physics
2 answers:
Radda [10]4 years ago
5 0

Answer:

a) θ = 30°

b) t = 1.154 h

c) ttotal = 1.33 h

d) ttotal = 1.33 h

e) cross the river in the shortest time possible, that angle must be equal to zero, where the cosine component is maximized.

f) t = 1 h

Explanation:

a) the total speed is equal to:

v = vw + vc

the direction is equal to:

θ = sin^-1(vc/vw), replacing values:

θ = sin^-1(2.8/5.6) = 30°

b) The time taken is equal to:

t = (5.6/(v*cosθ)) = (5.6/(5.6*cos30°)) = 1.154 h

c) The total time is equal to:

ttotal = t1 + t2 = (L/(vw + vc)) + (L/(vw-vc))

ttotal = (2.8/(5.6+2.8)) + (2.8/(5.6-2.8)) = 1.33 h

d) The total time is equal to:

ttotal = t1 + t2 = (L/(vw + vc)) + (L/(vw-vc))

ttotal = (2.8/(5.6+2.8)) + (2.8/(5.6-2.8)) = 1.33 h

e) cross the river in the shortest time possible, that angle must be equal to zero, where the cosine component is maximized.

f) The shortest time is equal to:

t = (5.60/(5.60*cos0°)) = 1 h

katrin2010 [14]4 years ago
4 0

Answer:

a) θ=210°, b) t=1.155hr, c) t=1.333hr, d) t=1.333hr, e) θ=180° (straight across), f) t=1hr.

Explanation:

So, the very first thing we nee to do when solving this problem is draw a diagram that represents it. In the attached picture I show a diagram for each part of this problem.

part a)

So, for her to move in a direction directly opposite her starting point, the x-component of her velocity must be de same as the velocity of the river in the opposite direction. We can use this fact to find the angle we need. If we analize the triangle I drew in the diagram, we can ses that:

cos \theta = \frac {V_{river}}{V_{boat}}

When solving for theta, we get that:

\theta =cos^{-1} ( \frac {V_{river}}{V_{boat}})

so now we can substitute the corresponding values:

\theta =cos^{-1} ( \frac {2.80km/hr}{5.60km/hr}})

Which yields:

\theta = 60^{o}

but we are measuring the angle relative to the line perpendicular to the river, positive if down the river. So we need to subtract the angle from 270° so we get:

θ=270°-60°=210°

part b)

for part b, we need to find what the y-component for the velocity of the boat is for an angle of 210° as shown in the problem, so we get that:

V_{y}=5.60km/hr*cos(210^{o})

V_{y}=-4.85km/hr

The woman will head in a negative 5.60km distance from one side to the other, so we get that the time it takes her to go to the other side of the river is:

t=\frac{y}{V_{y}}

t=\frac{5.60km}{4.85km/hr}=1.155hr

part c)

In order to find the time it takes her to travel 2.80km down and up the river, we need to find the velocities she will have in both directions. First, down stream:

V_{ds}=V_{river}+V{boat}

V_{ds}=2.80km/hr+5.60km/hr=8.40km/hr

and now up stream:

V_{us}=V_{boat}-V{river}

V_{us}=5.60km/hr-2.80km/hr=2.80km/hr

Once we got these two velocities we will now need to find the time to take each trip:

time down stream:

t_{ds}=\frac{x}{v_{ds}}

t_{ds}=\frac{2.80km}{8.40km/hr}=0.333hr

and the time up stream:

t_{us}=\frac{x}{v_{us}}

t_{us}=\frac{2.80km}{2,80km/hr}=1hr

so the total time will be:

t_{ds}+t_{us}=0.333hr+1hr=1.333hr

d) the time it takes the boat to go upstream and then downstream for the same distance is the same as the time we got on part c, since both times will be the same but they will come in different order, but their sum will be just the same:

t=1.333hr

e) For her to cross the river faster, she must row in a 180° direction (this is in a direction straight accross the river) that way she will use all her velocity to move across the river. (Even though she will move a certain distance horizontally and will not reach a point opposite to the starting point.)

f) In order to find the time it takes her to get to the other side, we need to divide the distance into the velocity of the boat.

t=\frac{d}{v_{boat}}

t=\frac{5.60km}{5.60km/hr}

so

t= 1hr

You might be interested in
Can anyone check if my table is correct or not?
xxMikexx [17]
You should write meter per second square for the acceleration in words
7 0
3 years ago
List of most launched orbital launch vehicles
weqwewe [10]
<span>Falcon 9</span><span>Pegasus</span><span>Proton</span><span><span>Satellite </span><span>Launch </span>Vehicle</span><span>Antares</span><span>Zenit</span><span>Atlas V</span><span>Soyuz</span><span>Ariane 5</span><span>Delta IV</span><span><span>Polar Satellite </span><span>Launch </span>Vehicle</span><span><span>Geosynchronous </span><span>Satellite </span>Launch Vehicle</span><span>Vega</span><span>Rokot</span><span>Angara</span><span>Soyuz-2</span><span>Shavit</span><span>H-IIB</span><span>Dnepr</span><span>Safir</span><span>Falcon 1</span><span><span>Long March </span>4B</span><span><span>Long March </span>2D</span><span>Delta II</span><span>H-II</span><span><span>Long March </span>3C</span><span>Soyuz-U</span><span><span>Long March </span>4C</span><span>Black Arrow</span><span><span>Long March </span>3A</span><span>Naro-1</span><span>Zenit-3SL</span><span>Sputnik</span><span><span>Long March </span>2F</span><span>VLS-1</span><span>Vulcan</span><span><span>Long March </span>2C</span><span>Athena</span><span><span>Long March </span>3B</span><span>Juno I</span><span>N1</span><span>Ariane 6</span><span>Kuaizhou</span><span>Zenit-2</span><span>Simorgh</span><span><span>Long March </span>11</span><span>Strela</span><span>Minotaur-C</span><span>Ariane 1</span><span><span>Augmented </span><span>Satellite </span>Launch Vehicle</span><span>Europa<span>
</span></span>
4 0
3 years ago
A snail is traveling from garden a to garden b which are 2 meters apart. It takes 4 hours for the snail to make it to garden b.
lys-0071 [83]

The snail was going at 0.5

7 0
3 years ago
Read 2 more answers
George rides his bike to his friend’s house that is 5 kilometers from his house. If he rides his bike at an average speed of 15
oksano4ka [1.4K]
I haven’t learned math in forever sorry
7 0
3 years ago
A piccolo and a flute can be approximated as cylindrical tubes with both ends open. The lowest fundamental frequency produced by
Alexandra [31]

Answer:

ratio of the piccolo's length to the flute's length is 0.4916

Explanation:

given data

frequency of piccolo = 522.5 Hz

frequency of flute = 256.9 Hz

to find out

ratio of the piccolo's length to the flute's length

solution

we get here length of tube that is express as

length of tube = velocity of sound ÷ fundamental frequency .......................1

so here ratio of Piccolo length to flute that is

\frac{L\ picco}{L\ flute}  = \frac{f\ flute}{f \ piccolo}

\frac{l \ piccolo}{L\ flute} = \frac{256.9}{522.5}  =  0.4916

so ratio of the piccolo's length to the flute's length is 0.4916

3 0
4 years ago
Other questions:
  • URGENTE ¿Cuál de los siguientes términos corresponde al concepto presión? * A. Es la fuerza perpendicular que ejerce un cuerpo s
    15·1 answer
  • During which stage of the cell cycle does the cell condense chromosomes and break down the nuclear envelope? Group of answer cho
    12·1 answer
  • - Po
    6·1 answer
  • A girl throws a rock horizontally at 10 m/s from the top of a building, 22 m above street level. Assuming free fall conditions a
    10·1 answer
  • The sides of a rectangle are 6.01 meters and 12 meters. Taking the significant figures into account, what is the area of the rec
    10·1 answer
  • The electrical charge of an atom as a whole is?
    12·2 answers
  • a train travles at a speed of 30m/s. the train starts at an initial position of 1000 meters and travels for 30 seconds. what is
    6·1 answer
  • Two bumper cars move in a straight line with the following equations of motion: x1 = -4.0 m + (1.1 m/s )t x2 = 8.8 m + (-2.9 m/s
    12·1 answer
  • A sound wave traveling in water at 144m/s has a wavelength of 0.5m determine the frequency of the wave
    6·2 answers
  • Please urgent science question explaining needed
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!