Answer:
The velocity of the shell when the cannon is unbolted is 500.14 m/s
Explanation:
Given;
mass of cannon, m₁ = 6430 kg
mass of shell, m₂ = 73.8-kg
initial velocity of the shell, u₂ = 503 m/s
Initial kinetic energy of the shell; when the cannon is rigidly bolted to the earth.
K.E = ¹/₂mv²
K.E = ¹/₂ (73.8)(503)²
K.E = 9336032.1 J
When the cannon is unbolted from the earth, we apply the principle of conservation of linear momentum and kinetic energy
change in initial momentum = change in momentum after
0 = m₁u₁ - m₂u₂
m₁v₁ = m₂v₂
where;
v₁ is the final velocity of cannon
v₂ is the final velocity of shell

Apply the principle of conservation kinetic energy

Therefore, the velocity of the shell when the cannon is unbolted is 500.14 m/s
Answer: 80J
Explanation:
According to the first principle of thermodynamics:
<em>"Energy is not created, nor destroyed, but it is conserved." </em>
Then this priciple (also called Law) relates the work and the transferred heat exchanged in a system through the internal energy
, which is neither created nor destroyed, it is only transformed. So, in this especific case of the compressed gas:
(1)
Where:
is the variation in the internal (thermal) energy of the system (the value we want to find)
is the heat transferred out of the gas (that is why it is negative)
is the work is done on the gas (as the gas is compressed, the work done on the gas must be considered positive )
On the other hand, the work done on the gas is given by:
(2)
Where:
is the constant pressure of the gas
is the variation in volume of the gas
In this case the initial volume is
and the final volume is
.
This means:
(3)
Substituting (3) in (2):
(4)
(5)
Substituting (5) in (1):
(6)
Finally:
This is the change in thermal energy in the compression process.
Answer:
Final vertical velocity = -29m/s
Horizontal distance = 100m
Height = 20.41m
Explanation:
1. The vertical final velocity can be calculated thus: vy = vyo - gt
Where;
vy = vertical velocity (m/s)
vyo = vertical initial velocity (20m/s)
g = acceleration due to gravity (9.8m/s²)
t = time (5s)
Hence, vy = vyo - gt
vy = 20 - (9.8 × 5)
vy = 20 - 49
vy = -29m/s
2. x = V0 x t
Where;
x = horizontal distance (m)
Vo = initial velocity
t = time (s)
x = 20 × 5
x = 100m
3. Maximum height = (voy)²/2g
= 20²/ 2 × 9.8
= 400/19.6
= 20.41m
Gravity, and Normal. Check the comments for why Applied isn't one.
Protons and neutrons in an atom are held together by a nuclear energy also called the strong force.