Answer:
Wavelength = 10 m
Explanation:
Given:
Speed = 100 m
Frequency = 10 Hz = 10 
To find : Wavelength = ?
We know that the relationship between wavelength λ, frequency f and speed v is given by the equation
v = fλ
Therefore wavelength λ = v/f
= 100 m
/ 10 m
= 10 m
Hence wavelength = 10 m
Answer: C. Some of uranium's mass is converted into energy, so the smaller atoms have less mass.
Explanation:
From Einstein's mass-energy relation:
E = mc²
Mass and energy are equivalent. Mass can be converted into energy and energy into mass.
When Uranium atoms under go nuclear fission, smaller atoms are formed and huge amount of energy is released. This energy comes from the mass difference of the uranium nuclei and new nuclei formed. This mass converted into energy according to Einstein's equation.
Answer:
1. Force = mass x acceleration - Newton
2. A planet moves faster in the part of its orbit nearer the Sun and slower when farther from the Sun, sweeping out equal areas in equal times - Kepler
3. For any force, there is an equal and opposite reaction force - Newton
.
4. An object moves at constant velocity if there is no net force acting upon it - Newton
5. The orbit of each planet about the Sun is an ellipse with the Sun at one focus - Kepler.
6. More distant planets orbit the Sun at slower average speeds, obeying the precise mathematical relationship p2-a3 - Kepler.
Explanation:
The three laws of planetary motion formulated by Johannes Kepler or Kepler's laws of planetary motion:
- The first law states that the planets move around the Sun in an elliptical orbit with the Sun at one of the foci.
- The second law states that the line segment joining a planet to the Sun sweeps out equal areas in equal time.
- The third law states that the square of the orbital period (p) of a planet is directly proportional to the cube of the mean distance (a) from the Sun (or semi-major axis of its orbit) i.e., p² is proportional to a³.
The three laws of motion formulated by Sir Isaac Newton or Newton's laws of motion:
- The first law, also known as the law of inertia states that an object at rest or moves at a constant velocity will remain at rest or keep moving at a constant velocity unless it is acted upon by a force.
- The second law states that the total force (F) applied on an object is directly related to the acceleration (a) of that object produced by the applied force and the mass (m) of the object, i.e., F = ma (assuming the mass m is constant).
- The third law, also known as the law of action and reaction states that when an object exerts a force on another object, then the latter exerts a force equal in magnitude and opposite in direction on the former object i.e., for every action, there is an equal and opposite reaction. The example includes the recoiling of a gun when it fires a bullet forward.
Answer:
A) v₁ = 10.1 m/s t₁= 4.0 s
B) x₂= 17.2 m
C) v₂=7.1 m/s
D) x₂=7.5 m
Explanation:
A)
- Assuming no friction, total mechanical energy must keep constant, so the following is always true:

- Choosing the ground level as our zero reference level, Uf =0.
- Since the child starts from rest, K₀ = 0.
- From (1), ΔU becomes:
- In the same way, ΔK becomes:
- Replacing (2) and (3) in (1), and simplifying, we get:

- In order to find v₁, we need first to find h, the height of the slide.
- From the definition of sine of an angle, taking the slide as a right triangle, we can find the height h, knowing the distance that the child slides down the slope, x₁, as follows:

Replacing (5) in (4) and solving for v₁, we get:

- As this speed is achieved when all the energy is kinetic, i.e. at the bottom of the first slide, this is the answer we were looking for.
- Now, in order to finish A) we need to find the time that the child used to reach to that point, since she started to slide at the its top.
- We can do this in more than one way, but a very simple one is using kinematic equations.
- If we assume that the acceleration is constant (which is true due the child is only accelerated by gravity), we can use the following equation:

- Since v₀ = 0 (the child starts from rest) we can solve for a:

- Since v₀ = 0, applying the definition of acceleration, if we choose t₀=0, we can find t as follows:

B)
- Since we know the initial speed for this part, the acceleration, and the time, we can use the kinematic equation for displacement, as follows:

- Replacing the values of v₁ = 10.1 m/s, t₂= 2.0s and a₂=-1.5m/s2 in (10):

C)
- From (6) and (8), applying the definition for acceleration, we can find the speed of the child whem she started up the second slope, as follows:

D)
- Assuming no friction, all the kinetic energy when she started to go up the second slope, becomes gravitational potential energy when she reaches to the maximum height (her speed becomes zero at that point), so we can write the following equation:

- Replacing from (12) in (13), we can solve for h₂:

- Since we know that the slide makes an angle of 20º with the horizontal, we can find the distance traveled up the slope applying the definition of sine of an angle, as follows:
