Answer:
The answer is "0.91238 and 744.8"
Explanation:
In this scenario it is easier to take a person to the water-pool than to transport the people in the air, as the person's strength is increased by water upwards:




Expansion work against constant external pressure: w=-pex Δ Δ V 3. The attempt at a solution . I tried following that. Because Vf>>Vi, and Vf=nRT/pex, then w=-pex x nRT/pex=-nRT (im assuming n is number of moles of CO2?). 1 mole of CaCO3 makes 1 mole of CO2, so plugging in numbers, I get 8.9kJ, although I dont use the 1 atm pressure at all
Answer: 62 μT
Explanation:
Given
Length of rod, l = 1.33 m
Velocity of rod, v = 3.19 m/s
Induced emf, e = 0.263*10^-3 V
Using Faraday's law, the induced emf of a rod can be gotten by the formula
e = blv where,
e = induced emf of the rod
b = magnetic field of the rod
l = length of the rod
v = velocity of the rod. On substituting, we have
0.263*10^-3 = b * 1.33 * 3.19
0.263*10^-3 = b * 4.2427
b = 0.263*10^-3 / 4.2427
b = 0.0000620 T
b = 62 μT
Thus, the strength of the magnetic field is 62 μT
So the equation for angular velocity is
Omega = 2(3.14)/T
Where T is the total period in which the cylinder completes one revolution.
In order to find T, the tangential velocity is
V = 2(3.14)r/T
When calculated, I got V = 3.14
When you enter that into the angular velocity equation, you should get 2m/s
Answer:
5 ohms
Explanation:
Given:
EMF of the ideal battery (E) = 60 V
Voltage across the terminals of the battery (V) = 40 V
Current across the terminals (I) = 4 A
Let the internal resistance be 'r'.
Now, we know that, the voltage drop in the battery is given as:
Therefore, the voltage across the terminals of the battery is given as:

Now, rewriting in terms of 'r', we get:

Plug in the given values and solve for 'r'. This gives,

Therefore, the internal resistance of the battery is 5 ohms.