The initial force between the two charges is given by:

where k is the Coulomb's constant, q1 and q2 the two charges, d their separation. Let's analyze now the other situations:
1. F
In this case, q1 is halved, q2 is doubled, but the distance between the charges remains d.
So, we have:

So, the new force is:

So the force has not changed.
2. F/4
In this case, q1 and q2 are unchanged. The distance between the charges is doubled to 2d.
So, we have:

So, the new force is:

So the force has decreased by a factor 4.
3. 6F
In this case, q1 is doubled and q2 is tripled. The distance between the charges remains d.
So, we have:

So, the new force is:

So the force has increased by a factor 6.
Answer:
the answer is at the BOTTOM OF THEIR QUESTION
Explanation:
IT IS CORRECT BTW
When these bonds are destroyed, a reaction occurs. ... Vinegar reacting with limestone breaks the bonds of calcium carbonate and acetic acid.
Answer:
A police car with its siren on is driving towards you, and you perceive the pitch of the siren to increase.
Explanation:
In Physics, Doppler effect can be defined as the change in frequency of a wave with respect to an observer in motion and moving relative to the source of the wave.
Simply stated, Doppler effect is the change in wave frequency as a result of the relative motion existing between a wave source and its observer.
The term "Doppler effect" was named after an Austrian mathematician and physicist known as Christian Johann Doppler while studying the starlight in relation to the movement of stars.
<em>The phenomenon of Doppler effects is generally applicable to both sound and light. </em>
An example of the Doppler effect is a police car with its siren on is driving towards you, and you perceive the pitch of the siren to increase. This is so because when a sound object moves towards you, its sound waves frequency increases, thereby causing a higher pitch. However, if the sound object is moving away from the observer, it's sound waves frequency decreases and thus resulting in a lower pitch.
<em>Other fields were the Doppler effects are applied are; astronomy, flow management, vibration measurement, radars, satellite communications etc. </em>
Answer:
Part a)

Part B)

Part C)

Explanation:
Part a)
Magnetic field due to a long ideal solenoid is given by

n = number of turns per unit length



now we know that magnetic field due to solenoid is


Now magnetic flux due to this magnetic field is given by




Part B)
Now for mutual inductance we know that




now we have


Part C)
As we know that induced EMF is given as


