1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marta_Voda [28]
2 years ago
7

You have probably noticed that carrying a person in a pool of water is much easier than carrying a person through air. To unders

tand why, find the buoyant force exerted by air and by water on the person. Assume the average volume of a person is 0.092 m3, and that the person is submerged in air and water respectively. (Give the magnitude.)
air: ________
water :_______
Physics
1 answer:
Kruka [31]2 years ago
6 0

Answer:

The answer is "0.91238 and 744.8"

Explanation:

In this scenario it is easier to take a person to the water-pool than to transport the people in the air, as the person's strength is increased by water upwards:

f_b \to m \to mg =person \\\\F_B \ in\  air = v\ & air\  g \\\\

               =0.076 \times 1.225 \times 9.8 \\\\ =0.91238 \ N\\\\

F_B \ in \ water = v  \& water \ g \\\\

                    =0.076 \times 1000 \times 9.8\\\\= 744.8 \ N\\

You might be interested in
Which of these is a characteristic of the Milky Way galaxy
IRINA_888 [86]

Answer:

A

Explanation:

3 0
2 years ago
Write one to two sentences explaining whether this passage from the story is exposition, rising action, climax, or resolution: “
fiasKO [112]

Answer:

This passage is part of the resolution because it shows what happens after the climax. It wraps up the conflict, and then the story is over.

Explanation: cause I am smart thats why

4 0
3 years ago
Read 2 more answers
A spring gun is made by compressing a spring in a tube and then latching the spring at the compressed position. A 4.97-g pellet
dimaraw [331]

Answer:

v  = 2.8898 \frac{m}{s}

Explanation:

This is a problem easily solve using energy conservation. As there are no non-conservative forces, we know that the energy is conserved.

When the spring is compressed downward, the spring has elastic potential energy. When the spring is relaxed, there is no elastic potential energy, but the pellet will have gained gravitational potential energy and kinetic energy. Lets see what are the terms for each of this.

<h3>Elastic potential energy</h3>

We know that a spring following Hooke's Law has a elastic potential energy:

E_{ep} = \frac{1}{2} k (\Delta x)^2

where \Delta x is the displacement from the relaxed length and k is the spring's constant.

To obtain the spring's constant, we know that Hooke's law states that the force made by the spring is :

\vec{F} = - k \Delta \vec{x}

as we need 9.12 N to compress 4.60 cm, this means:

k = \frac{9.12 \ N}{4.6 \ 10^{-2} \ m}

k = 198.26 \ \frac{ N}{m}

So, the elastic energy of the compressed spring is:

E_{ep} = \frac{1}{2} 198.26 \ \frac{ N}{m} (4.6 \ 10^{-2} \ m)^2

E_{ep} = 0.209759 \ Joules

And when the spring is relaxed, the elastic potential energy will be zero.

<h3>Gravitational potential energy</h3>

To see how much gravitational potential energy will the pellet win, we can use

\Delta E_{gp} = m g \Delta h

where m is the mass of the pellet, g is the acceleration due to gravity and \Delta h is the difference in height.

Taking all this together, the gravitational potential energy when the spring is relaxed will be:

\Delta E_{gp} = 4.97 \ 10^{-3} kg \ 9.8 \frac{m}{s^2} 4.6 \ 10^{-2} m

\Delta E_{gp} = 0.00224 \ Joules

<h3>Kinetic Energy</h3>

We know that the kinetic energy for a mass m moving at speed v is:

E_k = \frac{1}{2} m v^2

so, for the pellet will be

E_k = \frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2

<h3>All together</h3>

By conservation of energy, we know:

E_{ep} = \Delta E_{gp} + E_k

0.209759 \ Joules = 0.00224 \ Joules + \frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2

So

\frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2  = 0.209759 \ Joules - 0.00224 \ Joules

\frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2  = 0.207519 \ Joules

v  = \sqrt{ \frac{ 0.207519 \ Joules}{ \frac{1}{2} \ 4.97 \ 10^{-3} kg } }

v  = 2.8898 \frac{m}{s}

7 0
3 years ago
The average speed of an object which moves 100 m in 5 seconds is?
CaHeK987 [17]

Answer:

A car

Explanation:

A car can travel 100 m in 5 seconds

Hope this helps!

3 0
3 years ago
Một chất điểm chuyển động trong mặt phẳng Oxy với phương trình :<br> { = 2 + 10
In-s [12.5K]

Answer:

plz write your questions in English

3 0
3 years ago
Other questions:
  • The labels of the axes in a line graph consist of _____. A. only the units of measurement B. only the variable name C. the varia
    11·2 answers
  • Which best describes longitudinal waves?
    13·2 answers
  • The cockroach Periplaneta americana can detect a static electric field of magnitude 8.50 kN/C using their long antennae. If the
    8·1 answer
  • The point beneath surface where rock breaks and an arthquake is produced is known as the
    15·1 answer
  • Please answer correctly will give brainlist if correct
    12·1 answer
  • HELP!!! I have no idea how to calculate this.
    15·1 answer
  • What type of modulation is typically used by broadcasting stations to transmit pictures on television screens?
    9·2 answers
  • Which of the following is false
    10·2 answers
  • A proud new Jaguar owner drives her car at a speed of 35 m/s into a corner. The coefficients of friction between the road and th
    14·1 answer
  • If the mass of an object is 10 kg and the
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!