1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marta_Voda [28]
3 years ago
7

You have probably noticed that carrying a person in a pool of water is much easier than carrying a person through air. To unders

tand why, find the buoyant force exerted by air and by water on the person. Assume the average volume of a person is 0.092 m3, and that the person is submerged in air and water respectively. (Give the magnitude.)
air: ________
water :_______
Physics
1 answer:
Kruka [31]3 years ago
6 0

Answer:

The answer is "0.91238 and 744.8"

Explanation:

In this scenario it is easier to take a person to the water-pool than to transport the people in the air, as the person's strength is increased by water upwards:

f_b \to m \to mg =person \\\\F_B \ in\  air = v\ & air\  g \\\\

               =0.076 \times 1.225 \times 9.8 \\\\ =0.91238 \ N\\\\

F_B \ in \ water = v  \& water \ g \\\\

                    =0.076 \times 1000 \times 9.8\\\\= 744.8 \ N\\

You might be interested in
Force F acts between a pair of charges, q1 and q2, separated by a distance d. For each of the statements, use the drop-down menu
lora16 [44]

The initial force between the two charges is given by:

F=k \frac{q_1 q_2}{d^2}

where k is the Coulomb's constant, q1 and q2 the two charges, d their separation. Let's analyze now the other situations:

1. F

In this case, q1 is halved, q2 is doubled, but the distance between the charges remains d.

So, we have:

q_1' = \frac{q_1}{2}\\q_2' = 2 q_2\\d' = d

So, the new force is:

F'=k \frac{q_1' q_2'}{d'^2}= k \frac{(\frac{q_1}{2})(2q_2)}{d^2}=k \frac{q_1 q_2}{d^2}=F

So the force has not changed.

2. F/4

In this case, q1 and q2 are unchanged. The distance between the charges is doubled to 2d.

So, we have:

q_1' = q_1\\q_2' = q_2\\d' = 2d

So, the new force is:

F'=k \frac{q_1' q_2'}{d'^2}= k \frac{q_1 q_2)}{(2d)^2}=\frac{1}{4} k \frac{q_1 q_2}{d^2}=\frac{F}{4}

So the force has decreased by a factor 4.

3. 6F

In this case, q1 is doubled and q2 is tripled. The distance between the charges remains d.

So, we have:

q_1' = 2 q_1\\q_2' = 3 q_2\\d' = d

So, the new force is:

F'=k \frac{q_1' q_2'}{d'^2}= k \frac{(2 q_1)(3 q_2)}{d^2}=6 k \frac{q_1 q_2}{d^2}=6F

So the force has increased by a factor 6.

8 0
3 years ago
Read 2 more answers
A patient has an ongoing history of cancer. She has a tumor in the abdominal region, and has been undergoing treatment for it. T
Vadim26 [7]

Answer:

the answer is at the BOTTOM OF THEIR QUESTION

Explanation:

IT IS CORRECT BTW

6 0
3 years ago
Experiment: Limestone
White raven [17]
When these bonds are destroyed, a reaction occurs. ... Vinegar reacting with limestone breaks the bonds of calcium carbonate and acetic acid.
7 0
3 years ago
Which of the following is an example of the Doppler effect? A water bug on the surface of a pond is producing small ripples in t
noname [10]

Answer:

A police car with its siren on is driving towards you, and you perceive the pitch of the siren to increase.

Explanation:

In Physics, Doppler effect can be defined as the change in frequency of a wave with respect to an observer in motion and moving relative to the source of the wave.

Simply stated, Doppler effect is the change in wave frequency as a result of the relative motion existing between a wave source and its observer.

The term "Doppler effect" was named after an Austrian mathematician and physicist known as Christian Johann Doppler while studying the starlight in relation to the movement of stars.

<em>The phenomenon of Doppler effects is generally applicable to both sound and light. </em>

An example of the Doppler effect is a police car with its siren on is driving towards you, and you perceive the pitch of the siren to increase. This is so because when a sound object moves towards you, its sound waves frequency increases, thereby causing a higher pitch. However, if the sound object is moving away from the observer, it's sound waves frequency decreases and thus resulting in a lower pitch.

<em>Other fields were the Doppler effects are applied are; astronomy, flow management, vibration measurement, radars, satellite communications etc. </em>

3 0
3 years ago
A solenoidal coil with 26 turns of wire is wound tightly around another coil with 350 turns. The inner solenoid is 20.0 cm long
noname [10]

Answer:

Part a)

\phi = 2.76 \times 10^{-7} T m^2

Part B)

M = 5.52 \times 10^{-5} H

Part C)

EMF = 0.1 V/s

Explanation:

Part a)

Magnetic field due to a long ideal solenoid is given by

B = \mu_0 n i

n = number of turns per unit length

n = \frac{N}{L}

n = \frac{350}{0.20}

n = 1750 turn/m

now we know that magnetic field due to solenoid is

B = (4\pi \times 10^{-7})(1750)(0.100)

B = 2.2 \times 10^{-4} T

Now magnetic flux due to this magnetic field is given by

\phi = B.A

\phi = (2.2 \times 10^{-4})(\pi r^2)

\phi = (2.2 \times 10^{-4})(\pi(0.02)^2)

\phi = 2.76 \times 10^{-7} T m^2

Part B)

Now for mutual inductance we know that

\phi_{total} = M i

\phi_{total} = N\phi

\phi_{total} = 20(2.76 \times 10^{-4})

\phi_{total} = 5.52 \times 10^{-6}

now we have

M = \frac{5.52 \times 10^{-6}}{0.100}

M = 5.52 \times 10^{-5} H

Part C)

As we know that induced EMF is given as

EMF = M \frac{di}{dt}

EMF = 5.52 \times 10^{-5} (1800)

EMF = 0.1 V/s

3 0
3 years ago
Other questions:
  • Applying the Law of Conservation of Momentum
    13·1 answer
  • The epidermis is the top layer of skin compared to the underlying dermis of the
    11·2 answers
  • Find the speed of a 5.6-kg bowling ball that has a kinetic energy of 25.2 J.
    8·1 answer
  • An "emergency blow" is a procedure used by military submarines to quickly rise to the surface in case of trouble. It involves us
    7·1 answer
  • How are desert plants adapted to their climate?
    7·1 answer
  • Car A has a mass of 1,000 kg and is traveling 60 km/hr. Car B has a mass of 2,000 kg and is traveling 30 km/hr. Compare the kine
    15·2 answers
  • The Grand Canyon is more than 400 km long and in some places almost 2 km deep. Which model best represents the main process that
    13·1 answer
  • When practicing deep breathing, it is best to repeat the steps for
    5·2 answers
  • What is the change in entropy of 0.130 kg of helium gas at the normal boiling point of helium when it all condenses isothermally
    8·1 answer
  • A transverse mechanical wave is traveling along a string lying along the x-axis. The displacement of the string as a function of
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!