It is a completely false statement that in <span>any energy transformation, there is always some energy that gets wasted as non-useful heat. The correct option among the two options that are given in the question is the second option. I hope that this is the answer that has actually come to your desired help.</span>
Answer:
the moment of inertia with the arms extended is Io and when the arms are lowered the moment
I₀/I > 1 ⇒ w > w₀
Explanation:
The angular momentum is conserved if the external torques in the system are zero, this is achieved because the friction with the ice is very small,
L₀ = L_f
I₀ w₀ = I w
w =
w₀
where we see that the angular velocity changes according to the relation of the angular moments, if we approximate the body as a cylinder with two point charges, weight of the arms
I₀ = I_cylinder + 2 m r²
where r is the distance from the center of mass of the arms to the axis of rotation, the moment of inertia of the cylinder does not change, therefore changing the distance of the arms changes the moment of inertia.
If we say that the moment of inertia with the arms extended is Io and when the arms are lowered the moment will be
I <I₀
I₀/I > 1 ⇒ w > w₀
therefore the angular velocity (rotations) must increase
in this way the skater can adjust his spin speed to the musician.
Extinction of a species is most likely to occur as a result of "<span>environmental changes"
In short, Your Answer would be Option D
Hope this helps!</span>
Lighting flows around the outside of a truck, and the majority of the current flows from the cars metal cage into the ground below. It's not very safe to be in a car or truck during bad weather.
Answer:
16.1 m/s
Explanation:
We can solve the problem by using the law of conservation of energy.
At the beginning, the spring is compressed by x = 35 cm = 0.35 m, and it stores an elastic potential energy given by

where k = 316 N/m is the spring constant. Once the block is released, the spring returns to its natural length and all its elastic potential energy is converted into kinetic energy of the block (which starts moving). This kinetic energy is equal to

where m = 0.15 kg is the mass of the block and v is its speed.
Since the energy must be conserved, we can equate the initial elastic energy of the spring to the final kinetic energy of the block, and from the equation we obtain we can find the speed of the block:
