We have that for the Question "the acceleration of the object at time t = 0.7 s is most nearly equal to which of the following?"
- it can be said that the acceleration of the object at time t = 0.7 s is most nearly equal to the slope of the line connecting the origin and the point where the graph where the graph crosses the 0.7s grid line
From the question we are told
the acceleration of the object at time t = 0.7 s is most nearly equal to which of the following?
Generally the equation for the Force is mathematically given as
F=\frac{F}{dx}
Therefore
F=-kdx
k=600Nm^{-1}
now
K.E=0.5x ds^2
K.E=600*(-0.1^2)
K.E=3J
Therefore
the acceleration of the object at time t = 0.7 s is most nearly equal to the slope of the line connecting the origin and the point where the graph where the graph crosses the 0.7s grid line
For more information on this visit
brainly.com/question/23379286
Answer:
The reason is because both are exposed to a virtually infinite heat sink, due to the virtually infinite mass and of the surrounding environment, compared to the sizes of either the cup or the kettle such that the equilibrium temperature,
reached is the same for both the cup and the kettle as given by the relation;

Due to the large heat sink, T₂ - T₁ ≈ 0 such that the temperature of the kettle and that of the cup will both cool to the temperature of the environment
Explanation:
Answer:
a
The number of fringe is z = 3 fringes
b
The ratio is 
Explanation:
a
From the question we are told that
The wavelength is 
The distance between the slit is 
The width of the slit is 
let z be the number of fringes that appear between the first diffraction-envelope minima to either side of the central maximum in a double-slit pattern is and this mathematically represented as

Substituting values
z = 3 fringes
b
From the question we are told that the order of the bright fringe is n = 3
Generally the intensity of a pattern is mathematically represented as
![I = I_o cos^2 [\frac{\pi d sin \theta}{\lambda} ][\frac{sin (\pi a sin \frac{\theta}{\lambda } )}{\pi a sin \frac{\theta}{\lambda} } ]](https://tex.z-dn.net/?f=I%20%3D%20I_o%20cos%5E2%20%5B%5Cfrac%7B%5Cpi%20d%20sin%20%5Ctheta%7D%7B%5Clambda%7D%20%5D%5B%5Cfrac%7Bsin%20%28%5Cpi%20a%20sin%20%5Cfrac%7B%5Ctheta%7D%7B%5Clambda%20%7D%20%29%7D%7B%5Cpi%20a%20sin%20%5Cfrac%7B%5Ctheta%7D%7B%5Clambda%7D%20%7D%20%5D)
Where
is the intensity of the central fringe
And Generally 
![I = I_o co^2 [ \frac{\pi (\frac{n \lambda}{d} )}{\lambda} ] [\frac{\frac{sin (\pi a (\frac{n \lambda}{d} ))}{\lambda} }{\frac{\pi a (\frac{n \lambda}{d} )}{\lambda} } ]](https://tex.z-dn.net/?f=I%20%3D%20I_o%20co%5E2%20%5B%20%5Cfrac%7B%5Cpi%20%28%5Cfrac%7Bn%20%5Clambda%7D%7Bd%7D%20%29%7D%7B%5Clambda%7D%20%5D%20%5B%5Cfrac%7B%5Cfrac%7Bsin%20%28%5Cpi%20a%20%28%5Cfrac%7Bn%20%5Clambda%7D%7Bd%7D%20%29%29%7D%7B%5Clambda%7D%20%7D%7B%5Cfrac%7B%5Cpi%20a%20%28%5Cfrac%7Bn%20%5Clambda%7D%7Bd%7D%20%29%7D%7B%5Clambda%7D%20%7D%20%5D)
![I = I_o cos^2 (n \pi)[\frac{\frac{sin(\pi a (\frac{n \lambda}{d} ))}{\lambda} )}{ \frac{ \pi a (\frac{n \lambda }{d} )}{\lambda} } ]](https://tex.z-dn.net/?f=I%20%3D%20I_o%20cos%5E2%20%28n%20%5Cpi%29%5B%5Cfrac%7B%5Cfrac%7Bsin%28%5Cpi%20a%20%28%5Cfrac%7Bn%20%5Clambda%7D%7Bd%7D%20%29%29%7D%7B%5Clambda%7D%20%29%7D%7B%20%5Cfrac%7B%20%5Cpi%20a%20%28%5Cfrac%7Bn%20%5Clambda%20%7D%7Bd%7D%20%29%7D%7B%5Clambda%7D%20%7D%20%5D)
![I = I_o cos^2 (3 \pi) [\frac{sin (\frac{3 \pi }{6} )}{\frac{3 \pi}{6} } ]](https://tex.z-dn.net/?f=I%20%3D%20I_o%20cos%5E2%20%283%20%5Cpi%29%20%5B%5Cfrac%7Bsin%20%28%5Cfrac%7B3%20%5Cpi%20%7D%7B6%7D%20%29%7D%7B%5Cfrac%7B3%20%5Cpi%7D%7B6%7D%20%7D%20%5D)


Explanation:
solution: mass m = 5g = 0.005kg; extension e = 7cm = 0.07m; force f = 70 N; velocity = ?; using: work done in elastic material w = 1/2 fe = 1/2 ke2 = 1/2 mv2 - the kinetic energy of the moving stone. 1/2 fe =...
Answer:
explained
Explanation:
the Neptune was the first planet discovered through the use of mathematics by two astronomers one French and other English. This was breakthrough success in the field of astronomy that marked the importance of mathematics in astronomy. The discovery of the Neptune resulted from the need to explain the motion of Uranus, motion of which could not be explained by the gravitational effect of Jupiter and Neptune.It needed very complex mathematical equations to be Solved to explain it. The two astronomers were Joseph le Verrier and John Couch Adams.