Answer: touch the pan to the burner
Explanation:
There are three modes of heat transfer:
conduction, convection and radiation.
For conduction, the heat transfers from a hot object to a cold object when the two are in contact.
For convection there is bulk motion of fluid occurs which transfers the heat.
For heat transfer by radiation, medium is not required.
Thus, to demonstrate conduction between pan and burner, the pan must touch the burner.
Greater the mass greater is inertia. Greater the inertia greater is the force required to stop motion of an object. Linear motion depends only on mass whereas rotational motion depends on mass, size and shape of an object. So conclusion is that it would be difficult to stop 10 kg mass cuz of greater inertia compared to 1kg mass. Hope it clears your doubt.
Explanation:
It is given that,
Mass of the object, m = 0.8 g = 0.0008 kg
Electric field, E = 534 N/C
Distance, s = 12 m
Time, t = 1.2 s
We need to find the acceleration of the object. It can be solved as :
m a = q E.......(1)
m = mass of electron
a = acceleration
q = charge on electron
"a" can be calculated using second equation of motion as :




a = 16.67 m/s²
Now put the value of a in equation (1) as :


q = 0.0000249 C
or

Hence, this is the required solution.
Answer:
Explanation:
Current drawn by electric heater = power/volt =1500/120 = 12.5 A.
current drawn by hair drier at 600 watt = 600/120 =5 A
current drawn by hair drier at 900 watt = 900/120 = 7.5 A.
Total current drawn by heater and hair drier used at 900 watt
= 12.5 + 7.5 = 20 A
Breaking current =20 A
So fuse will trip at this point .
Answer:
1.) Frequency F = 890.9 Hz
2.) Wavelength (λ) = 0.893 m
Explanation:
1.) Given that the wavelength = 0.385m
The speed of sound = 343 m / s
To predict the frequency, let us use the formula V = F λ
Where (λ) = wavelength = 0.385m
343 = F × 0.385
F = 343/0.385
F = 890.9 Hz
2.) Given that the frequency = 384Hz
Using the formula again
V = F λ
λ = V/F
Wavelength (λ) = 343/384
Wavelength (λ) = 0.893 m
The two questions can be solved with the use of formula