1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oduvanchick [21]
3 years ago
7

What is the speed of a proton whose kinetic energy is 3.4 kev ?

Physics
1 answer:
Andreas93 [3]3 years ago
8 0
The kinetic energy of the proton is 3.4 kev
1 kev = 1.602 × 10^-16 joules
therefore 3.4 kev is equivalent to;
3.4 ×  (1.602 ×10^-16)= 5.4468 × 10^-16 J
Kinetic energy is calculated by the formula 1/2mv² where m is the mass and v is the velocity.
Therefore V = √((2 × ( 5.4468×10^-16))/ (1.67 ×10^-27))
                    = 8.077 × 10^5 m/s

You might be interested in
What do you measure when you measure an object’s mass?
Effectus [21]

Answer:

how much space it takes up in the world

Explanation:

1) Mass is a measurement of the amount of matter something contains, while Weight is the measurement of the pull of gravity on an object. 2) Mass is measured by using a balance comparing a known amount of matter to an unknown amount of matter. Weight is measured on a scale.

3 0
2 years ago
Which of these would most likely be a parts of a lab procedure?
vladimir2022 [97]
C . Record the time to complete a chemical reaction
6 0
3 years ago
Read 2 more answers
A photon of wavelength 2.78 pm scatters at an angle of 147° from an initially stationary, unbound electron. What is the de Brogl
Elena-2011 [213]

Answer:

2.07 pm

Explanation:

The problem given here is the very well known Compton effect which is expressed as

\lambda^{'}-\lambda=\frac{h}{m_e c}(1-cos\theta)

here, \lambda is the initial photon wavelength, \lambda^{'} is the scattered photon wavelength, h is he Planck's constant, m_e is the free electron mass, c is the velocity of light, \theta is the angle of scattering.

Given that, the scattering angle is, \theta=147^{\circ}

Putting the respective values, we get

\lambda^{'}-\lambda=\frac{6.626\times 10^{-34} }{9.11\times 10^{-31}\times 3\times 10^{8} } (1-cos147^\circ ) m\\\lambda^{'}-\lambda=2.42\times 10^{-12} (1-cos147^\circ ) m.\\\lambda^{'}-\lambda=2.42(1-cos147^\circ ) p.m.\\\lambda^{'}-\lambda=4.45 p.m.

Here, the photon's incident wavelength is \lamda=2.78pm

Therefore,

\lambda^{'}=2.78+4.45=7.23 pm

From the conservation of momentum,

\vec{P_\lambda}=\vec{P_{\lambda^{'}}}+\vec{P_e}

where,\vec{P_\lambda} is the initial photon momentum, \vec{P_{\lambda^{'}}} is the final photon momentum and \vec{P_e} is the scattered electron momentum.

Expanding the vector sum, we get

P^2_{e}=P^2_{\lambda}+P^2_{\lambda^{'}}-2P_\lambda P_{\lambda^{'}}cos\theta

Now expressing the momentum in terms of De-Broglie wavelength

P=h/\lambda,

and putting it in the above equation we get,

\lambda_{e}=\frac{\lambda \lambda^{'}}{\sqrt{\lambda^{2}+\lambda^{2}_{'}-2\lambda \lambda^{'} cos\theta}}

Therefore,

\lambda_{e}=\frac{2.78\times 7.23}{\sqrt{2.78^{2}+7.23^{2}-2\times 2.78\times 7.23\times cos147^\circ }} pm\\\lambda_{e}=\frac{20.0994}{9.68} = 2.07 pm

This is the de Broglie wavelength of the electron after scattering.

6 0
3 years ago
A turntable with a moment of inertia of 7.2 × − ⋅ rotates freely with an angular speed of 6.5 ⁄ . Riding on the rim of the turnt
irina1246 [14]

Answer:

turntable with a moment of inertia of 7.2 × − ⋅ rotates freely with an angular speed of 6.5 ⁄ . Riding on the rim of the turntable, 2 from the center, is a hamster. When the hamster walks to the center of the turntable, the angular speed of the turntable becomes ⁄. What is the mass of hamster?

Explanation:

6 0
2 years ago
Enter an expression for the force constant for the floating raft, in terms of L, g, and the density of water, ρ.
andriy [413]

Answer:

K = ρL²g

Explanation:

Consider L as the length of the raft inside the water when the raft is displaced through additional distance y;

Then:

F = upthrust ( restoring force) = weight of the liquid displaced.

F = V_{\omega} \rho_{\omega} g= A y \rho_{\omega} g

where;

A = L²

\rho_{\omega} = \rho

F = ky.

Then,

Ay \rho g = ky

L^2y \rho g = ky

Divide both sides by y

K = ρL²g

3 0
3 years ago
Other questions:
  • What is energy efficiency
    12·1 answer
  • According to the Big Bang Theory, the universe is __________________. A) constant B) depleting C) expanding D) exploding
    6·2 answers
  • What type of force will cause a object to change its speed
    9·1 answer
  • If a sound increases 5 dB, the sound becomes _______ times louder.
    11·2 answers
  • PLZ HELP ME
    11·2 answers
  • A car goes round a curve of radius 48m, the road is banked at an angle of 15 with the horizontal,at what maximum speed may the c
    7·1 answer
  • Ian walks 2 km to his best friend's house, then walks 0.5 km to the library. He then makes a 2.5 km walk home. The entire walk t
    10·1 answer
  • A 2.5 kg block is launched along the ground by a spring with a spring constant of 56 N/m. The spring is initially compressed 0.7
    10·2 answers
  • What is de Broglie's hypothesis ? Make sure to be specific (qualitative and quantitative)
    6·1 answer
  • Which of the following could describe the velocity of an object?
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!