(a) The time for the capacitor to loose half its charge is 2.2 ms.
(b) The time for the capacitor to loose half its energy is 1.59 ms.
<h3>
Time taken to loose half of its charge</h3>
q(t) = q₀e-^(t/RC)
q(t)/q₀ = e-^(t/RC)
0.5q₀/q₀ = e-^(t/RC)
0.5 = e-^(t/RC)
1/2 = e-^(t/RC)
t/RC = ln(2)
t = RC x ln(2)
t = (12 x 10⁻⁶ x 265) x ln(2)
t = 2.2 x 10⁻³ s
t = 2.2 ms
<h3>
Time taken to loose half of its stored energy</h3>
U(t) = Ue-^(t/RC)
U = ¹/₂Q²/C
(Ue-^(t/RC))²/2C = Q₀²/2Ce
e^(2t/RC) = e
2t/RC = 1
t = RC/2
t = (265 x 12 x 10⁻⁶)/2
t = 1.59 x 10⁻³ s
t = 1.59 ms
Thus, the time for the capacitor to loose half its charge is 2.2 ms and the time for the capacitor to loose half its energy is 1.59 ms.
Learn more about energy stored in capacitor here: brainly.com/question/14811408
#SPJ1
Hello! Assuming that the only force acting on the mass is 30N...
Fnet = 30N
Fnet = ma (mass x acceleration)
ma = 30N
a = 30N / m
a = 30N / 7kg
a = 4.2857 m/s^2
a = 4 m/s^2
I hope this helps!
To solve this problem it is necessary to apply the concepts related to the Third Law of Kepler.
Kepler's third law tells us that the period is defined as

The given data are given with respect to known constants, for example the mass of the sun is

The radius between the earth and the sun is given by

From the mentioned star it is known that this is 8.2 time mass of sun and it is 6.2 times the distance between earth and the sun
Therefore:


Substituting in Kepler's third law:






Therefore the period of this star is 3.8years
It increases as the number of protons and electrons in the shell increases
Its acceleration is constant.