Answer:
It is equal to the number of moles of acid that reacted. When Oxalic acid is your limiting reactant it is the # of moles of oxalic acid used. When NaOH is your limiting reactant it is equal to the number of moles of NaOH used.
M₁ = mass of water = 75 g
T₁ = initial temperature of water = 23.1 °C
c₁ = specific heat of water = 4.186 J/g°C
m₂ = mass of limestone = 62.6 g
T₂ = initial temperature of limestone = ?
c₂ = specific heat of limestone = 0.921 J/g°C
T = equilibrium temperature = 51.9 °C
using conservation of heat
Heat lost by limestone = heat gained by water
m₂c₂(T₂ - T) = m₁c₁(T - T₁)
inserting the values
(62.6) (0.921) (T₂ - 51.9) = (75) (4.186) (51.9 - 23.1)
T₂ = 208.73 °C
in three significant figures
T₂ = 209 °C
The nuclear reactions which are under experimenter's control are said to be controlled nuclear reactions. In this, you can maintain the speed of the incident particle. α and β-decay process are examples of non-controlled nuclear reactions.
Answer:
cell
chloroplast and cell wall
nucleus
life processes
cell membrane
shape and size
vacuole
Hope it helps
Solids and liquids have volumes thatdo not change easily. A gas, on the other hand, has a vol- ume thatchanges to match the volume of its container. The molecules in a gas are very far apart compared with the molecules in a solid or a liquid. The amount of space between the molecules in a gas can change easily.