Answer:
Energy lost is 7.63×10⁻²⁰J
Explanation:
Hello,
I think what the question is requesting is to calculate the energy difference when an excited electron drops from N = 15 to N = 5
E = hc/λ(1/n₂² - 1/n₁²)
n₁ = 15
n₂ = 5
hc/λ = 2.18×10⁻¹⁸J (according to the data)
E = 2.18×10⁻¹⁸ (1/n₂² - 1/n₁²)
E = 2.18×10⁻¹⁸ (1/15² - 1/5²)
E = 2.18×10⁻¹⁸ ×(-0.035)
E = -7.63×10⁻²⁰J
The energy lost is 7.63×10⁻²⁰J
Note : energy is lost / given off when the excited electron jumps from a higher energy level to a lower energy level
Hey there!
Electrons are negatively charged and orbit the nucleus of the atom on energy levels (kind of in a cloud) :)
(The blue dots on the picture)
Answer:
B. Excited state
Explanation:
Energy levels higher than the ground state are called the excited states. This concept is based on the premise that electrons can move round the nucleus in certain permissibe orbits or energy levels.
The ground state is the lowest energy state available to the electron. This is usually the most stable state.
The excited state is any level higher than the ground state. An electron in an energy level has a definite amount of energy associated with it at that level.
The given substance is SOLID. Solids have definite shape and definite volume. By the term definite we mean that wherever it may be placed both shape and volume remain the same. From the given above, the substance has a definite shape of sphere and definite volume of 50 mL.