The first option, collapsed in on itself.
The star's core mass becomes so dense that the resulting gravity implodes the star.
Interesting enough, the third option is kindof true too...some large and tenacious black holes that absorb other stars will form incredibly bright accretion disks around their perimeter before filling absorbing the star.
Answer:
1.69.
Explanation:
- The solution = 12.0 / 7.11 = 1.687 = 1.69.
- The rule of significant figures for division states that: the results are reported to the fewest significant figures.
- 12.0 contains 3 significant figures.
- 7.11 contains 3 significant figures.
So, the solution should contain 3 significant figures.
- Now, the issue id of rounding; In a series of calculations, carry the extra digits through to the final result, then round.
- If the digit to be removed is equal to or greater than 5, the preceding digit is increased by 1.
- The digit that should be removed is 7 that is larger than 5 so increase the preceding digit by 1.
Answer:
To the best of my knowledge, it is because of the amount of gamma rays is given off.
Explanation:
While both are isotopes, Potassium 40 gives off fewer gamma rays compared to Cobalt 60. Potassium 40 isn't really harmful to humans, but Cobalt 60 (I believe) is used in chemotherapy.
Answer:
in a chemical reaction of NaOH with H2O, after NaOH is completely disassociated, we will find Na+ and OH- ions in the solution. (option C).
Explanation:
In a reaction where NaOH is added to H2O.
NaOH is considered a strong base, this means that in an aqueous solution ( in water) it's able to completely disassociate in ions.
There will not remain any NaOH in the solution. This means option D is not correct.
The ions in which NaOH will disassociate are : NaOH → Na+ + OH-
These ions we will find in the solution.
Not only Na+ because NaOH is a strong base, so there will be a lot of OH- ions as well in solution.
This means in a chemical reaction of NaOH with H2O, after NaOH is completely disassociated, we will find Na+ and OH- ions in the solution.