Answer:
(a) Force must be grater than 283.87 N
(B) Force will be equal to 193.945 N
Explanation:
We have given mass of the crate m = 49.6 kg
Acceleration due to gravity 
Coefficient of static friction 
Coefficient of kinetic friction 
(a) Static friction force is given by 
So to just start the crate moving we have to apply more force than 283.87 N
(B) This force will be equal to kinetic friction force
We know that kinetic friction force is given by 
Answer:
a)
, b)
, c) D. The magnitud of the change in the ball's momentum.
Explanation:
a) The magnitude of the change in the ball's momentum is:
![\Delta p = (0.275\,kg)\cdot \left[\left(1.63\,\frac{m}{s} \right)-\left(-3.28\,\frac{m}{s} \right)\right]](https://tex.z-dn.net/?f=%5CDelta%20p%20%3D%20%280.275%5C%2Ckg%29%5Ccdot%20%5Cleft%5B%5Cleft%281.63%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%5Cright%29-%5Cleft%28-3.28%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%5Cright%29%5Cright%5D)

b) The change in the magnitude of the ball's momentum:
![\Delta p' = (0.275\,kg)\cdot \left[(1.63\,\frac{m}{s} )-(3.28\,\frac{m}{s} ) \right]](https://tex.z-dn.net/?f=%5CDelta%20p%27%20%3D%20%280.275%5C%2Ckg%29%5Ccdot%20%5Cleft%5B%281.63%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%29-%283.28%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%29%20%5Cright%5D)

c) The magnitude of the change in the ball's momentum is more directly related to the net force acting on the ball, as it measures the effect of the force on change in ball's motion at measured time according to the Impact Theorem. So, the right answer is option D.
Mechanical waves are those waves that require a material medium for propagation.
<h3>What are mechanical waves?</h3>
Generally, we define a wave as a disturbance along a medium which transfers energy. It then follows that waves move energy from one point to another.
Waves can be classified as;
- Mechanical waves
- Electromagnetic waves
Mechanical waves are those waves that require a material medium for propagation such as sound, and waves on a strings.
Learn more about mechanical waves: brainly.com/question/9242091
The fluid that is being passed through the syringe and needle is incompressible, which means that it will transmit pressure equally. Therefore, the pressure on the plunger will be equivalent to the pressure on the needle. We also know that:
Pressure = Force / Area
Pressure on plunger = 4 / (π*(0.012/2)²)
Pressure on plunger = 35.4 kPa
Pressure on needle = 35.4 kPa
35.4 kPa = F / (4 / (π*(0.0025/2)²)
F = 0.17 N
The force on the needle is 0.17 N
The final velocity of the train after 8.3 s on the incline will be 12.022 m/s.
Answer:
Explanation:
So in this problem, the initial speed of the train is at 25.8 m/s before it comes to incline with constant slope. So the acceleration or the rate of change in velocity while moving on the incline is given as 1.66 m/s². So the final velocity need to be found after a time period of 8.3 s. According to the first equation of motion, v = u +at.
So we know the values for parameters u,a and t. Since, the train slows down on the slope, so the acceleration value will have negative sign with the magnitude of acceleration. Then
v = 25.8 + (-1.66×8.3)
v =12.022 m/s.
So the final velocity of the train after 8.3 s on the incline will be 12.022 m/s.