The wavelength of the infrared radiation is λ =
×
m.
<h3>What is infrared radiation?</h3>
An infrared telescope is tuned to detect infrared radiation with a frequency of 9.45 THz.
We know that,
1 THz = 10¹² Hz
So,
f = 9.45 × 10¹² Hz
We need to find the wavelength of the infrared radiation.
λ=c/f
λ = 3×
/9.45×
λ = 3.174 ×
m
The term "infrared radiation" (IR) refers to a part of the electromagnetic radiation spectrum with wavelengths between about 700 nanometers (nm) and one millimeter (mm). Longer than visible light waves but shorter than radio waves are infrared waves.
Electromagnetic radiation with wavelengths longer than those of visible light is known as infrared, also known as infrared light. Since it is undetectable to the human eye, The typical range of wavelengths considered to be infrared (IR) is from about 1 millimeter to the nominal red edge of the visible spectrum, or about 700 nanometers.
To learn more about infrared radiation from the given link:
brainly.com/question/13163856
#SPJ4
Answer:
<em>1,378.9ms²</em>
Explanation:
Given the following
Distance S = 70.6m
Time t = 0.32secs
Initial velocity = 0m/s
Required
Acceleration
Using the equation of motion
S = ut+1/2at²
Substitute
70.6 = 0+1/2a(0.32)²
70.6 = 0.0512a
a = 70.6/0.0512
a = 1,378.9
<em>Hence the acceleration is 1,378.9ms²</em>
Answer:
Radius of the loop is 0.18 m or 18 cm
Explanation:
Given :
Current flowing through the wire, I = 45 A
Magnetic field at the center of the wire, B = 1.50 x 10⁻⁴ T
Number of turns in circular wire, N = 1
Consider R be the radius of the circular wire.
The magnetic field at the center of the current carrying circular wire is determine by the relation:
Here μ₀ is vacuum permeability constant and its value is 4π x 10⁻⁷ Tm/A.
Substitute the suitable values in the above equation.

R = 0.18 m
Answer:
Maximum height reached by the ball is 32 meters.
Explanation:
It is given that,
If a baseball is project upwards from the ground level with an initial velocity of 32 feet per second, then it's height is a function of time. The equation is given as :
...........(1)
t is the time taken
s is the height attained as a function of time.
Maximum height achieved can be calculated as :


-16 t + 32 = 0
t = 2 seconds
Put the value of t in equation (1) as :

s = 32 meters
So, the maximum height reached by the ball is 32 meters. Hence, this is the required solution.
Answer:
wind speed i think where i live?