<span>On the y-axis (the bottom of the table) hope this helps</span>
Answer: The height above the release point is 2.96 meters.
Explanation:
The acceleration of the ball is the gravitational acceleration in the y axis.
A = (0, -9.8m/s^)
For the velocity we can integrate over time and get:
V(t) = (9.20m/s*cos(69°), -9.8m/s^2*t + 9.20m/s^2*sin(69°))
for the position we can integrate it again over time, but this time we do not have any integration constant because the initial position of the ball will be (0,0)
P(t) = (9.20*cos(69°)*t, -4.9m/s^2*t^2 + 9.20m/s^2*sin(69°)*t)
now, the time at wich the horizontal displacement is 4.22 m will be:
4.22m = 9.20*cos(69°)*t
t = (4.22/ 9.20*cos(69°)) = 1.28s
Now we evaluate the y-position in this time:
h = -4.9m/s^2*(1.28s)^2 + 9.20m/s^2*sin(69°)*1.28s = 2.96m
The height above the release point is 2.96 meters.
Answer:
She does a work of 689.44 J in the snow.
Explanation:
A force is said to do work when it alters the state of motion of a body. The work of the force on that body will be equivalent to the energy needed to move it.
In other words, Work is a form of energy transmission between bodies. In order to carry out work, a force must be exerted on a body and it must move.
The work is equal to the product of the force times the distance and the cosine of the angle that exists between the direction of the force and the direction that the moving point or object travels:
W= F*d* cos Ф
Work W is measured in joules (J), force is measured in newtons (N), and displacement in meters (m).
In this case:
- F= 180 N
- d=5 m
- Ф= 40 degrees
Replacing:
W= 180 N*5 m* cos 40
Solving:
W= 689.44 J
<u><em>She does a work of 689.44 J in the snow.</em></u>