The 61.0 kg object<span> ... F = (300kg)(6.673×10−11 </span>N m<span>^2 </span>kg<span>^−2)(61kg)/(.225m)^2. F = 2.412e-5 </span>N<span> towards the 495 </span>kg<span> block. </span>b. [195kg] ===.45m ... (b<span>) You cannot achieve this </span>position<span>. For the </span>net force<span> to become zero, one or both of the </span>masses<span> must ...</span>
No they say "Watch out it's the fuzz"
Answer:
110.9 m/s²
Explanation:
Given:
Distance of the tack from the rotational axis (r) = 37.7 cm
Constant rate of rotation (N) = 2.73 revolutions per second
Now, we know that,
1 revolution =
radians
So, 2.73 revolutions = 
Therefore, the angular velocity of the tack is, 
Now, radial acceleration of the tack is given as:

Plug in the given values and solve for
. This gives,
![a_r=(17.153\ rad/s)^2\times 37.7\ cm\\a_r=294.225\times 37.7\ cm/s^2\\a_r=11092.28\ cm/s^2\\a_r=110.9\ m/s^2\ \ \ \ \ \ \ [1\ cm = 0.01\ m]](https://tex.z-dn.net/?f=a_r%3D%2817.153%5C%20rad%2Fs%29%5E2%5Ctimes%2037.7%5C%20cm%5C%5Ca_r%3D294.225%5Ctimes%2037.7%5C%20cm%2Fs%5E2%5C%5Ca_r%3D11092.28%5C%20cm%2Fs%5E2%5C%5Ca_r%3D110.9%5C%20m%2Fs%5E2%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5B1%5C%20cm%20%3D%200.01%5C%20m%5D)
Therefore, the radial acceleration of the tack is 110.9 m/s².
Answer:
THE VOLUME OF GAS DECREASES AS THE ESCAPES OUT